Arxiu mensual: abril de 2010

Pistes i guanyadors

totestres

A la resposta del repte d’aquest mes que acaba es podia arribar per dues vies de raonament diferents. La primera consistia en dibuixar els casos més simples i anar anotant els resultats en un taula que, si la fem arribar a l’eneàgon, presenta els següents resultats.

Polígons Diagonals
Triangle 0
Quadrat 2

Pentàgon 5

Hexàgon 9

Heptàgon 14

Octàgon 20

Eneàgon 27

Si reflexioneu una mica descobrireu una pauta en l’increment del número de diagonals que us permet continuar la taula sense haver de dibuixar cap més polígon. Tot i que s’hagi acabat el termini per contestar el repte us convido a que ho intenteu.

3guanyadrs

Ai! Perdoneu. M’oblidava dels guanyadors. Aquesta vegada al podi tenim tres persones. En primera posició qui ha estat capaç de calcular les diagonals del icosàgon i el triacontàgon. Després, els dos que han esbrinat les del decàgon. No era la pregunta del repte però també té molt de mèrit, si no s’ho creieu proveu a fer-ho vosaltres.

Missatges secrets – s’acosta el repte del maig

totestres

Segur que tu o algun amic teu, a classe o a l’hora de pati, heu escrit algun cop un missatge utilitzant un llenguatge secret amb la intenció que només ho podés llegir la persona a qui anava destinat. I sabeu qui es dedica a inventar i investigar aquests llenguatges? Doncs els matemàtics, que a mates no tot són càlculs i operacions com hem comentat a classe un munt de vegades.
Si teniu bona memòria recordareu que ja una vegada ens vam topar amb un enigma que utilitzava un alfabet parcialment codificat, l’anomenat Què ha escrit el mestre?. Molts el vau endevinar, per això espero que aquest mes el repte tingui força encertants.

cesar

La imatge superior, procedent de la wikipèdia, il·lustra un dels codis més antics, el que feia servir Juli Cèsar per enviar les instruccions als seus generals. Per encriptar el missatge substituïa les lletres de les paraules originals per les lletres que estaven un número determinat de vegades més enllà en l’alfabet. Així si el factor de desplaçament era de 3, com en el dibuix, la paraula Hola es convertia en Krod.

Per trencar-se el cap

totestres

Article tramès per Carme Farré

Sabries transformar 10 tresos en 3 uns tot utilitzant l’operació de sumar?
Si et sembla molt difícil pots fer servir una calculadora, però t’asseguro que es més fàcil fer-ho amb llapis i paper.
El que si faré és donar-te una pista per fer-ho més assequible… Una mica enredada, això sí.
A ningú no li agrada estar sol, als números tampoc. Els hi poden agradar les parelles, els trios…

MatematicART

secadu

Els alumnes de cinquè que dediquem algunes hores del nostre currículum matemàtic a crear polígons més o menys originals amb l’ajuda del geoplà i unes quantes gomes, o a enrajolar superfícies amb una certa gràcia, no som els únics que lliguem geometria i plàstica. Pintors famosos i consagrats com ara Chillida, Guinovart, Ràfols Casamada, George Rousse, Tàpies i Yturralde també ho han fet.
Si ho dubteu podeu visitar la web de la Galeria Manel Mayoral de Barcelona, que durant els mesos de febrer i març va agrupar en una exposició anomenada Geometries algunes obres amb aquestes característiques.
Si voleu fer el contrari, és a dir anar de la matemàtica a l’art i no de l’art a la matemàtica, podeu fer un cop d’ull a la pàgina web de l’artista coreà Ghee Beom Kim. De debò que paga la pena.

Llibres de franc

adul

Som a la setmana de Sant Jordi i per tant, amb una falta total d’originalitat, parlarem de llibres, un tema que no toco gaire en el meu bloc. Però com que a tots ens agrada passar per moderns no parlaré dels que es publiquen en format paper, sinó dels que podem trobar a la xarxa.
Una de les moltes virtuts d’internet, tot i que l’SGAE, no la classificaria com a tal, és la possibilitat de trobar infinitat d’obres que, de forma totalment legal, es poden descarregar i posteriorment imprimir a casa. Em direu que el fet de llegir de franc no és excepcional perquè fins ara teníem les biblioteques ja ens ho permetien fer, hem d’admetre però, que aquestes institucions tenen unes limitacions inexistents a la xarxa.
Un lloc on trobareu un bon fons de llibres de temàtica matemàtica és Free Mathematics Books. L’autor d’aquest bloc, que com he comentat algunes vegades, no és matemàtic, sinó senzillament un mestre amb una cultureta bàsica que vol despertar l’interès dels seus alumnes i per què no, d’altres adults, per aquesta àrea del saber, d’entre el pilot de llibres oferts per aquest site es quedaria amb Flatland, la novel·la satírica que el 1884 va publicar Edwin A. Abbott. Una obra que segons el gran i enyorat Isaac Asimov és la millor introducció possible a la manera en que podem percebre les diferents dimensions.

Mosaics alumnes

priadu1

cristinetaSi el polígons aïllats poden adoptar formes atractives, com al logotip de la meva companya, encara podem aconseguir-ne de més reeixides quan aquestes figures es combinen creant un enrajolat o un mosaic.
A classe n’hem fet alguns amb l’única condició de que les rajoles havien de ser quadrilàters. Jo vaig aconseguir aquests dos mosaics, què us semblen? Al primer combino dos quadrilàters totalment irregulars, al segon, un quadrat amb un trapezi. Per què no proveu de fer-ne alguns vosaltres a casa?.

10 arbres

totestres

Article tramès per Sergi Franqueza

jardinerEl rei, que era un home cregut i capriciós, va fer una estranya demanda al seu jardiner. Li va dir que li donaria 10 arbres i que els havia de plantar formant 5 files de 4 arbres cadascuna i li va donar una setmana per fer-ho. El jardiner es va espantar molt, tothom sabia que qui feia enfadar al rei era empresonat durant anys i panys o fins i tot decapitat, però 4 fileres de 5 arbres eren 20 arbres i no 10. Com s’ho faria? Ajudem-lo i pensem com s’han de plantar.

Exercici Incorrecte?

adul

Han de ser les respostes d’un examen coherents amb la via real? Si, com jo, sou dels que penseu que sí, estareu d’acord amb el titular del diari El País del propassat divendres anunciant que, a les proves de la Consejeria de Educación de la Comunidad de Madrid equivalents a les nostres competències bàsiques, hi havia un problema sense solució.
Presentar un problema amb una resposta numèricament possible, però irreal a la vida quotidiana no ens ajuda a exigir als nostres alumnes coherència i lògica en les respostes. Com podem criticar-los quan es queden tan tranquils després de dir que un ciclista va a 500 km/h o que la superfície d’un plaça d’aparcament és de 400 cm2 si nosaltres els hi posem un problema on diu que un nen ha obert un llibre entre les pàgines 49 i 50?

L’algorisme del fer safareig

adul

Alguns matemàtics de la nostra època dediquen el seu temps a temes ben curiosos. Així per exemple, un grup de matemàtics italians han creat un algorisme que permet esbrinar la velocitat a la qual rumors i xafarderies s’escampen per les xarxes socials.
Malgrat que el primer que ens passa pel cap és “quina poca-soltada” o que “qui no té feina el gat pentina”, la cosa és seriosa i ho prova el fet que una companyia com IBM hagi subvencionat l’estudi amb la seguretat de trobar-li un ús pràctic i industrial.
Trobareu més informació sobre aquest curiós estudi a l’article L’algoritmo del gossip del Corriere della Sera.

Càlculs amb daus – esbrina el que ha sortit

adul

El joc que explico avui es fa només amb dos daus i fixeu-vos que s’anomena càlcul amb daus i no suma, com a un article l’anterior, perquè en aquest cas el càlcul a fer el determina el jugador que llença els daus.
L’activitat es fa només amb dos daus i es desenvolupa de la següent forma. El jugador que llença els daus, que no pot veure l’altre jugador, fa una operació amb el resultat obtingut (posem 1 i 2) i li diu a l’altre
– la suma dels daus fa 3.
En aquesta cas l’altre jugador dedueix fàcilment que han sortit l’u i el dos, ja que només hi ha una resposta possible.
Es pot donar el cas que la informació no ajudi gaire.
– la suma dels daus és 8 (2 + 6, 3 + 5, 4 + 4)
En aquesta cas el segon jugador ha de demanar més informació
– I el producte quan fa?
– 15
ara ja pot deduir que els números obtinguts són el 3 i el 5

Una possible variant seria obligar al jugador que llença els daus a triar sempre la informació que no deixi opcions a més d’una possibilitat (quan sigui possible, és clar). en aquest cas qui ha de fer més càlculs discriminatoris és el primer jugador en comptes del segon.