P.FERMAT – L’equació de Pell (II)

El mateix mes de febrer de 1657, Fermat va enviar una carta a Bernanrd Frénicle de Bessy (c. 1606 – 1675) preguntant-li el mateix problema:

Cada nombre no quadrat és de tal naturalesa que un pot trobar una infinitud de quadrats pels quals pots multiplicar el nombre donat i si li afegeixes una unitat, obtenir un quadrat per resultat.

Per exemple: 3 és un nombre no quadrat que si multipliquem pel quadrat 1, dóna 3, i afegint-li la unitat, dóna 4, que és un quadrat.

El mateix 3, multiplicat per 16, que és un quadrat, dóna 48 i amb la unitat afegida dóna 49, que és un quadrat.

Hi ha una infinitud de quadrats que multiplicats pel 3 amb una unitat afegida donen un nombre quadrat.

Demano una regla general, -donat un  nombre no quadrat, trobar quadrats que multiplicats per un nombre donat donin un quadrat a l’afegir-los a una unitat.

Per exemple, quin és el menor quadrat que multiplicat per 61 amb una unitat afegida donarà un quadrat? A més a més, quin és el menor quadrat que multiplicat per 109 amb una unitat afegida donarà un quadrat?

Si no em dones la solució general, aleshores dóna una solució particular d’aquests dos casos els quals, els he escollit petits per tal de no posar gran dificultat. Després que hagi rebut la teva resposta, et proposaré una anltra matèria. No cal dir que la meva proposició és trobar enters que resolguin la qüestió ja que en el cas de les fraccions, el pitjor dels aritmètics podria trobar la solució.

Com a curiositat es pot dir que el matemàtic francès Frénicle de Bessy es va dedicar a la teoria de nombres i va ser capaç de resoldre molts dels problemes plantejats per Fermat.

Deixa un comentari

L'adreça electrònica no es publicarà Els camps necessaris estan marcats amb *