Category Archives: Matemàtica grega

Sense cap tipus de dubte, la matemàtica grega és la base de la matemàtica realitzada a Europa en molt anys. De fet, els Elements d’Euclides van ser llibre de text de les facultats fins ben entrat el segle XIX i tota l’estructura que va anar donant pas a la geometria més complicada, té els seus peus col·locats en noms com els d’Arquimedes, Euclides, Pitàgores, Ptolemeu…

D.SUTTON. Sólidos platónicos y arquimedianos

Portada SOLIDOS PLATONICOS Y ARQUIMEDIANOSL’adjectiu “senzill” és el que millor s’adapta a aquest petit llibre de 63 pàgines que l’editorial Oniro va treure al mercat l’any 2005. A la contraportada podem llegir unes frases que ens fan una petita referència històrica del títol del llibre: “en la puerta de la Academia de Platón, donde se reunían los más ilustres filósofos de la antigua Grecia, había una inscripción que rezaba: ‘Que aquí no entre quien no sepa geometría’. Pues Platón y sus discípulos veían en la esfera y en los cinco políedros regulares -llamados sólidos platónicos- la máxima expresión de la belleza y la armonía cósmica. Y a la luz de la ciencia actual, las especulaciones de los antiguos filósofos adquieren nuevos y sorprendentes significados“. El llibre comença amb l’esfera, “símbol perfecte de la unitat” i després introdueix els cinc sòlids platònics: el tetràedre, l’hexàedre, l’octàedre, l’icosàedre i el dodecàedre. Explica que la paraula “políedre” prové del grec i que literalment significa “moltes cares” o “molts plans”. S’anomenen “sòlids platònics” perquè la primera descripció en la que se’ls tracta com a grup es troba al Timeu de Plató. Llegint A History of Greek Mathematics, la fantàstica obra en dos volums de Sir Thomas Heath, trobem que l’origen dels cinc políedres ve documentat en el Resum de Proclus, on trobem que Pitàgores va descobrir la construcció dels cinc políedres regulars juntament amb els nombres irracionals: després d’aquests [Tales i Ameristus o Mamercus], Pitàgores va transformar l’estudi de la geometria en un ensenyament liberal, examinant els principis de la ciència des del començament i provant els teoremes d’una manera inmaterial i intel·lectual: ell va ser el que va descobrir la teoria dels irracionals i la construcció de les figures còsmiques. El llibre de Sutton continua amb la descripció dels cinc cossos i la demostració de l’existència de només cinc complint que totes les seves cares i angles trièdrics han de ser iguals. Després de comentar la raó àuria i altres tipus de políedres, entra a detallar cadascun dels tretze cossos arquimedians, anomenats així perquè s’atribueix el seu descobriment a Arquimedes. També els descriu i dóna els seus desenvolupaments sobre el pla.

El llibre en sí no aporta gran cosa al que ja circula a altres llibres però tanmateix ofereix una visió senzilla que pot ser útil a qualsevol estudiant de l’ESO. No entra en massa tecnicisme i, fins i tot, el tractament de la dualitat entre els políedres el fa d’una manera força entenedora.

FITXA TÈCNICA:

PUNTUACIÓ (sobre 5):  

NIVELL: ESO.     Nº PÀGINES: 63.        ISBN: 84-9754-131-6

EDITORIAL: Oniro

La tauleta Plimpton 322

A la universitat de Columbia, catalogada a la col·lecció Plimpton amb el número 322, trobem aquesta tauleta babilònica datada cap el 1900-1600 aC. Aquest document històric és un document valiosíssim que ens dóna una idea de com avançades estaven les matemàtiques en aquella època.

Usant les nostres xifres en base sexagesimal, la transcripció de la tauleta és la següent:

1:59:00:15                              1:59             2:49          1
1:56:56:58:14:50:06:15     56:07             1:20:25    2
1:55:07:41:15:33:45              1:16:41        1:50:49    3
1:53:10:29:32:52:16              3:31:49       5:09:01    4
1:48:54:01:40                         1:05            1:37           5
1:47:06:41:40                         5:19             8:01          6
1:43:11:56:28:26:40           38:11           59:01           7
1:41:33:45:14:03:45            13:19          20:49           8
1:38:33:36:36                          8:01          12:49           9
1:35:10:02:28:27:24:26         1:22:41       2:16:01   10
1:33:45                                    45                  1:15         11
1:29:21:54:02:15                   27:59          48:49         12
1:27:00:03:45                          2:41            4:49         13
1:25:48:51:35:06:40             29:31          53:49        14
1:23:13:46:40                         56                  1:46        15

pyth plimptonLa tauleta consta de quinze files i quatre columnes on clarament, l’últim dels quatre nombres de cada fila es correspon amb el número de fila. Per interpretar la resta de nombres, la segona i tercera columnes tenen un encapçalament que podem traduir per “amplada” i “diagonal” mentre que la primera és una autèntica barbaritat de càlcul. En primer lloc, explicarem aquesta notació sexagesimal (base 60). Per exemple, en la segona columna, 1:59 significa 59 + 1·60 = 119, 56:07 = 7 + 56·60 = 3.367… Cada xifra cap a l’esquerre es multiplica per un 60 més que la xifra anterior mentre que cap a la dreta és l’operació contrària. Ara, per interpretar correctament la tauleta, suposem que tenim un triangle rectangle de costats a, b i c del qual sabem que compleix el teorema de Pitàgores. De la tradició pitagòrica ens arriba que per qualssevol nombres enters m i n, a = m2 + n2, b = 2mn i c = m2n2 formen una tripleta pitagòrica a2 = b2 + c2. Però donat a la datació d’aquesta tauleta podem afirmar que aquest resultat ja es coneixia molts segles abans. Per exemple, el segon i tercer nombres de la primera fila es corresponen amb els costats c i a de la tripleta m = 12 i n = 5. Tota la segona i tercera columnes es corresponen amb els costats d’un triangle rectangle i si k és el respectiu nombre de fila, les tripletes (k,m,n) de les quinze files són (1,12,5), (2,64,27), (3,75,32), (4,125,54), (5,9,4), (6,20,9), (7,54,25), (8,32,15), (9,25,12), (10,81,40), (11,2,1), (12,48,25), (13,15,8), (14,50,27) i (15,9,5). Respecte de la primera columna, podem dir que es correspon amb el quadrat del quaocient a/b amb el que el càlcul del catet b passa aser evident.

“Arquimedes”, un quadre de José de Ribera (1630)

La vida d’Arquimedes de Siracussa se situa aproximadament entre els anys 287 i 212 aC i va ser considerat l’alfa dels grecs, és a dir, el número 1 per davant del beta Eratóstenes de Cirene. Va heretar la seva passió per les matemàtiques del seu pare, l’astrònom Fídies. La seva vida és un cúmul de llegendes que és difícil saber si són veritat o mentida. Sembla ser que va estudiar a l’Alexandria de la famosa biblioteca i que allí va poder posar-se en contacte amb els grans matemàtics i científics del moment com el mateix Eratóstenes i, per què no, el gran Euclides. La seva gran reputació el devien catapultar a alts càrrecs de la cort i de l’exèrcit i se li atribueixen diversos invents d’artilugis militars que van fer de Siracussa una ciutat inexpugnable. A la història de la física el seu nom va lligat al prinipi que va descobrir i al seu famós “Eureka”. El rei Hieró de Siracussa estava molt preocupat perquè havia encarregat a un joier que li construís una corona amb un lingot d’or. Al rebre la comanda, el monarca devia posar mala cara perquè va veure que la corona no semblava pesar la quantitat d’or que havia donat al joier. Què podia fer? Hieró va encarregar a Arquimedes que aconseguís trobar un mètode per poder decidir la veritat de la qüestió ja que no hi havia cap persona que fos capaç de fer-ho. Arquimedes es va dedicar en os i ànima dia i nit per trobar la solució del problema però la resposta no arribava. Un cert dia, mentre es relaxava a la banyera de casa seva, va observar que tal com es ficava dins de l’aigua, el nivell de l’aigua pujava de manera proporcional a la porció de cos que hi anava submergint. Arquimedes va veure la solució i de l’emoció, va sortir al carrer despullat com estava cridant ‘Eureka, Eureka’. Si la corona estava construïda amb el mateix lingot d’or que se li havia donat al joier, al submergir-la en una banyera, el nivell de l’aigua hauria de pujar fins la mateixa alçada que al submergir en la mateixa banyera una peça d’or igual que l’inicial. No sabem quina sort va córrer el joier però segurament devia sortir fugint de Siracussa ja que en aquelles èpoques era molt habitual que les comissions dels joiers es vegessin complementades amb sobresous provinents dels metalls que treballaven.

Respecte del pintor: José de Ribera, més conegut com “Lo Spagnoletto” va néixer a Xàtiva en 1591. Va estudiar pintura al taller de Francisco Ribalta i en 1616 es va instal·lar a Nàpols després de visitar i treballar a diverses ciutats italianes. Un cop establert, comencen els seus anys més prolífics (1620-1630). Va pintar segons el tenebrisme i va esdevenir un dels pintors més importants de l’escena europea del segle XVII.

“L’últim sopar”, un quadre de Salvador Dalí (1955)

Si algun dia visiteu Washington no us podeu perdre la National Gallery of Art (http://www.nga.gov/) on podreu gaudir d’una de les obres d’un dels nostres pintors més universals, Salvador Dalí (1904-1989). El quadre L’últim sopar el va pintar en 1955 i en ell representa la famosa escena bíblica sota una volta dodecaèdrica, símbol platònic de Déu. Dalí va representar a un Jesucrist transparent, ros, sense barba i ensenyant un pit, una imatge completament atípica al que estem acostumats.

Respecte del pintor: la vida de Dalí representa el surrealisme en ella mateixa: als cinc anys els seus pares el van portar a la tomba d’un germà seu i li van dir que ell era la seva reencarnació. La passió per la pintura li va venir de petit i als 12 anys ja pintava al taller de l’artista Ramon Pichot i als 15 va poder exposar la seva obra a Figueres. Als 18 es va traslladar a Madrid per estudiar a la Real Academia de Bellas Artes de San Fernando on va coincidir amb personatges com Garcia Lorca i Buñuel. Les seves excentricitats cada cop més incipients van provocar la seva expulsió de l’Academia ja que ell no considerava que cap professor fos prou competent com per avaluar-lo.

PLATÓ – El Timeu (II)

La narració de Timeu segueix amb l’assignació de cadascun dels políedres regulars als quatre elements fonamentals. Ja ha deixat clar que el cinquè cos es correspon amb l’univers i, per tant, el dodecàedre no entra en aquest repartiment. Les paraules de Timeu són les següents:

En primer lloc, tractaré la figura primera i més petita l’element de la qual és el triangle que té una hipotenusa d’una extensió que és el doble del costat menor. Quan s’uneixen dos d’aquests per la hipotenusa i això succeeix tres vegades de manera que les hipotenuses i els catets menors s’orientin cap a un mateix punt com a centre, es genera un triangle equilàter dels sis. La unió de quatre triangles equilàters segons tres angles plans genera un angle sòlid, el següent del més obtús dels angles plans. Quatre angles d’aquests generen la primera figura sòlida la qual divideix tota la superfície de l’esfera en parts iguals i semblants. El segon element es composa dels mateixos triangles quan s’uneixen vuit triangles equilàters i es construieix un angle sòlid a partir de quatre angles plans. Quan s’han generat sis d’aquests angles, es completa així el segon cos. El tercer cos neix de cent vint elements ensamblats i dotze angles sòlids, cadascun d’ells rodejat de cinc triangles equilàters plans i amb vint triangles equilàters per base. La funció d’un dels triangles elementals es va completar quan va generar aquests elements; el triangle isòsceles, d’altra banda, va generar el quart element, per composició de quatre triangles i reunió dels seus angles rectes en el centre per formar un quadrat equilàter. La reunió de sis figures semblants d’aquest tipus va produir vuit angles sòlids cadascun d’ells composat segons tres angles plans rectes. La figura del cos creat va ser cúbica amb sis cares de quadrats equilàters. Però encara hi havia una cinquena composició, el déu la va fer per a l’univers quan el va pintar. […] Assignem doncs la figura cúbica a la terra ja que és la menys mòbil dels quatre tipus i la més maleable d’entre els cossos i és de tota necessitat que tals qualitats les posseeixi l’element que tingui les cares més estables. Entre els triangles suposats al començament, la superfície de costats iguals és per naturalesa més segura que la de costats desiguals i la superfície quadrada formada per dos equilàters està sobre la seva base necessàriament de forma més estable que un triangle, tant en les seves parts com en el conjunt. Per tant, si atribuïm aquesta figura a la terra salvem el discurs probable i, a més a més, de la resta, a l’aigua, la que es mou amb menys dificultat; la més mòbil, al foc i la intermitja, l’aire i, un altre cop, la més petita, al foc, la més gran a l’aigua i la mitjana a l’aire i, finalment, la més aguda al foc, la segona més aguda a l’aire i la tercera a l’aigua. En tot això és necessari que la figura que té les cares més petites sigui per naturalesa la més mòbil, la més tallant i aguda de totes en tot sentit i, a més a més, la més liviana, doncs està composada del mínim nombre de parts semblants, i que la segona tingui aquestes mateixes qualitats en segon grau i la tercera, en tercer. Sigui doncs segons el raonament correcte i el probable, la figura sòlida de la piràmide element i llavor del foc, diguem que la segona en la generació correspon a l’aire i la tercera, a l’aigua.

“Claudi Ptolemeu”, una excentricitat del Youtube

L’altre dia, navegant pel Youtube, em vaig trobar amb una excentricitat digne de citar: no m’imaginava que el sistema epicicle-deferent que Apol·loni de Perga va inventar al segle III aC i que Ptolemeu va posar en pràctica en el seu Almagest donés tant de sí.

En primer lloc començarem explicant quin és aquest sistema que tant es va anar repetint al llarg de la història de l’astronomia. Per representar-lo, he agafat aquesta imatge de la pàgina web  http://nrumiano.free.fr/Ecosmo/cg_history.html perquè crec que il·lustar perfectament el model. The Ptolemaic systemPtolemeu creia que la Terra estava al centre de l’univers i que tots els planetes, el sol i la lluna giraven al seu voltant. El problema dels astrònoms és que, per exemple, si el sol rotés sempre a la mateixa velocitat, és a dir, amb el moviment circular uniforme predicat per Aristòtil, les quatre estacions de l’any haurien de ser iguals. A l’Almagest, Ptolemeu estudia perfectament la durada de les estacions i veu com la primavera i l’estiu en conjunt duren més que la tardor i l’hivern i que, la primavera és més llarga que l’estiu. Aquest fet fàcilment comprovable va fer que Ptolemeu col·loques al cel un sistema de deferents i epicicles que permetessin salvar la irregularitat aparent del moviment solar. A la il·lustració, mirem la situació dels planetes Mercuri i Venus. Així com la lluna i el sol estan situats sobre una circumferència de centre a la Terra, aquests dos planetes estan situats en una circumferència el centre de la qual està col·locat en una altra circumferència anomenada deferent. Ordenem les idees. Al voltant de la Terra, un punt virtual rota amb velocitat circular uniforme seguint una circumferència anomenada deferent. Al mateix temps, en aquest punt virtual col·loquem el centre d’una altra circumferència (que estarà contínuament rotant al voltant de la Terra) que anomenarem epicicle. Ara, fem que el planeta comenci a girar amb velocitat uniforme. El resultat final és que els planetes, vistos des de la Terra, no aniran sempre a la mateixa velocitat i que, fins i tot, en algun moment retrocediran en la seva trajectòria. Amb aquest procediment i un altre anomenat “equant”, Ptolemeu va ser capaç d’explicar amb gran precisió tots els moviments dels astres i aquests models van estar vigents fins que al segle XVII Johannes Kepler descobrís l’el·lipse en els cels.

Doncs bé, l’arxiu del Youtube parteix d’un article de R.Hanson titulat “The Mathematical Power of Epicyclical Astronomy” de la revista Isis 51 (1960), pàgs. 150-158, on l’autor defensa que es pot dibuixar qulsevol cosa a partir d’anar afegint epicicles i més epicicles. Els autors del video Carman i Serra, mitjançant 1.000 epicicles, han aconseguit dibuixar un dels personatges més característics de Springfield. Vegem-ho:

[kml_flashembed movie=”http://es.youtube.com/v/NvCdsnyx7Qk” width=”425″ height=”350″ wmode=”transparent” /]

No és fantàstic! Ptolemeu no coneixia la televisió i molt menys els Simpson i possiblement era incapaç d’imaginar-se més de tres epicicles junts però… és increïble fins a on pot arribar la ment humana.

PLATÓ – El Timeu (I)

Si en la història de la matemàtica hi ha una obra que reflexa clarament la conjunció entre la filosofia i la geometria és, sense cap tipus de dubte, el Timeu de Plató. L’acció del diàleg se situa a l’Atenes del 420 aC i consisteix en un diàleg entre Sócrates, Críties i Timeu. En la introducció al diàleg que fan M.A. Duran i F. Lisi a l’edició castellana de l’esditorial Gredos, llegim com Sócrates, mestre de Plató, adopta una posició secundària i se li presuposa una edat que ronda els 50 anys. Per la seva banda, Timeu és natural de Lócride i és un polític d’edat avançada que ha ocupat alts càrrecs públics. Finalment, Críties és un ciutadà important d’Atenes que es troba en la cima de la seva carrera política. El siàleg en sí mateix comença amb un resum de la conversa mantinguda el dia abans sobre l’estat ideal i avança amb éls arguments de Timeu dividits en tres grans blocs: les obres de la raó, la contribució de la necessitat i la barreja de la intel·ligència i de la necessitat. En el segon bloc, Timeu descriu la situació caòtica de l’univers abans de la seva creació i continua amb l’explicació de l’estructura dels elements, tots ells formats a partir de triangles. El text que hi fa referència és el següent:

En primer lloc, crec que per qualsevol està més enllà de tot dubte que el foc, la terra, l’aigua i l’aire són cossos. Ara bé, tota forma corporal té també profunditat. I, a més a més, és de tota necessitat que la superfície envolti la profunditat. La superfície d’una cara plana està composada de triangles. Tots els triangles es desenvolupen a partir de dos, cadascun dels quals amb un angle recte i els altres dos aguts. Un té a ambdós costats una fracció d’angle recte dividit per costats iguals, l’altre parts desiguals d’un angle recte atribuïda a costats desiguals [isòsceles i escalè]. En el nostre camí segons el discurs probable acompanyat de necessitat, suposem que aquest és el principi del foc i dels altres cossos. Però els altres principis anteriors a aquests els coneix déu i a aquell d’entre tots els homes a qui ell estima. Certament, hem d’explicar quins serien els quatre cossos més perfectes que malgrat ser diferents entre ells, podrien néixer els uns dels altres quan es desintegren. En efecte, si ho aconseguim, tindrem la veritat sobre l’origen de la terra i el foc i dels seus mitjans proporcionals. Doncs no coincidirem  amb ningú en que hi ha cossos visibles més bells que d’altres dels quals cadascun representa un gènere particular. Aleshores, hem d’esforçar-nos per composar aquests quatre gèneres de cossos d’extraordinària bellesa i dir que hem captat la seva naturalesa suficientment. Dels dos triangles, l’isòsceles va tenir la sort de tenir una naturalesa única, però les d’aquell l’angle recte del qual està contingut en costats desiguals van ser infinites. Per a començar bé, s’ha de fer una altra elecció, és necessari escollir en la classe dels triangles d’infinites formes, aquell que sigui el més perfecte. El que eventualment estigui en condicions d’afirmar que el triangle per ell escollit és el més bonic per a la composició dels elements, imposarà la seva opinió, doncs no és cap adversari sinó un amic. Per la nostra part, nosaltres deixem de costat a la resta i suposem que en la multiplicitat dels triangles un és el més bell: aquell del qual surgeix en tercer lloc l’isòsceles. Però específicar el perquè exigeix un raonament major i els premis amistosos estan aquí per a qui posi a prova aquesta afirmació i descobreixi que és així definitivament. Per tant, siguin escollits dos triangles amb els quals el foc i els altres elements estan construïts: un d’ells isòsceles, l’altre amb un costat gran  el quadrat del qual és tres cops el quadrat del menor. Ara hem de preceisar més del que vam dir abans d’una forma poc clara. Doncs els quatre elements semblaven tenir el seu origen uns en els altres malgrat que aquesta aparença era falsa, doncs malgrat que els quatre elements neixen dels triangles que hem escollit, mentre que tres deriven d’un -el que té els costats desiguals-, el quart és l’únic que es composa del triangle isòsceles. Per tant, no és possible que mitjançant la disolució de tots en tots, molts de petits originin a uns pocs de grans i viceversa; però sí ho és en el cas de tres elements, perquè quan es disolen els grans d’aquells que per la seva naturalesa estan constituïts per un tipus de triangle, es composen molts de petits a partir d’ells que adopten les figures corresponents i, a la seva vegada, quan molts de petits es divideixin en triangles, a l’originar-se una quantitat de volum únic, podria donar lloc a una altra forma gran. Cartabón graduado.Aquesta és doncs la nostra teoria sobre la gènesi dels uns en els altres. A continuació hauríem de dir de quina manera es va originar la figura de cadascun dels elements i a partir de la un ió de quants triangles.

Timeu ha planetjat que els dos triangles primordials són els que es corresponen amb el joc de regles que habitualment tenim per casa. El primer dels triangles és el triangle rectangle isòsceles el qual equival a les dues meitats obtingudes al dividir un quadrat per la seva diagonal: el nostre escaire. L’altre, el dels costats desiguals, podem llegir com el quadrat del catet major és igual a tres vegades el quadrat del catet menor. Quin és aquest triangle? Suposem que anomenem bc als catets major i menor, respectivament. Quina serà la seva hipotenusa a? Pel teorema de Pitàgores, a2 = b2 + c2. Però b= 3c2 i, per tant, a2 = 4c2. Finalment, fent arrels quadrades, tenim que a = 2c. Per tant, el nostre triangle rectangle és tal que el catet menor és la meitat de la hipotenusa, és a dir, cadascuna de les dues meitats que s’obtenen al dividir un triangle equilàter pel seu eix de simetria: el nostre cartabò.

C.DORCE. Ptolomeo, el astrónomo de los círculos

Les “noces d’argent” de la col·lecció “La matemática en sus personajes” va arribar amb la publicació d’aquest llibre dedicat a un dels grans matemàtics grecs: Claudi Ptolemeu (s. I dC). D’aquest personatge en sabem molt poca cosa i el podem situar a l’Alexandria de la gran biblioteca, llegint apassionadament tots els coneixements que allí s’hi trobaven. Ptolemeu va escriure diverses obres tals com les Taules manuals, el Tetrabiblos, la Geografia, les Hipòtesis planetàries, el Planisferi, l’Analema, les Fases de les estrelles fixes, l’Òptica, l’Harmònica i el que és el nucli del llibre publicat per Nívola: l’Almagest o la Gran Sintaxi Matemàtica. En primer lloc, aquesta magna obra ens serveix per analitzar l’astronomia grega pre-ptolemaica ja que en ella trobem dades i referències que l’autor considera. En el segle II aC, per exemple, Hiparc de Rodes va desenvolupar una gran activitat observacional a l’illa grega i sembla ser que va escriure diversos tractats matemàtics i també astronòmics. Totes aquestes obres s’han perdut en el temps però l’Almagest de Ptolemeu ha deixat constància de moltes d’aquestes observacions. Per començar, Ptolemeu ens diu que “el primer dels gran teoremes respecte del sol és la determinació de la durada de l’any. Els antics van estar sempre en desacord i confusió en els seus pronunciaments respecte d’aquest càlcul […] ja que quan s’examina el retorn aparent del sol al mateix equinocci o solstici, l’any és menor que els 365 dies i quart, però quan s’examina el retorn del sol a un estel fix, l’any excedeix els 365 dies i quart. Així, Hiparc va introduir la idea que l’esfera de les estrelles fixes es movia molt lentament“. Hiparc va estudiar aquesta variació a una obra titulada Sobre el desplaçament dels equinoccis i els solsticis i va determinar aquest moviment en 1º cada 100 anys.

Després de la mort de Ptolemeu, tota la seva obra va esperar a que en el segle IV, Pappus d’Alexandria la descobrís i es dediqués a comentar-la. També Proclus Diadocus (411-485) la va comentar i mitjançant el Tetrabiblos, va ser introduïda a la Casa de la Saviesa que el califa al-Ma’mûn va fundar a Bagdad al s. IX. El Tetrabiblos és la seva gran obra astrològica i la traducció a l’àrab que en va fer al-Batriq va servir per a que el nom de Ptolemeu agafés foeça en els cercles científics àrabs: a partir d’aquí, la resta d’obra van començar a ser traduïdes i analitzades. De la mateixa manera i via l’astrologia (traducció de Plató de Tívoli en 1138), l’occident medieval va començar a sentir el nom de Ptolemeu.

El llibre en sí comença amb l’anàlisi del món geocèntric ptolemiac i ho fa mitjançant tres hipòtesis que es dedica a anar tirant per terra. En la primera, suposa que la Terra no està en l’eix central de rotació diària però que sí es troba equidistant dels dos pols; en la segona, la Terra es troba sobre l’eix de rotació però desplaçada cap a un dels pols i, finalment; en la tercera suposa que la Terra no està ni a l’eix de rotació ni és equidistant als pols. En els tres casos arriba a contradicció i li queda una Terra centrada en un món tan gran que la seva mida és negligible en comparació amb l’alçada dels cels. També determina que l’angle entre el cercle de l’eclíptica (el zodíac) i l’equador és de 23º 51′ 20″, valor que arrodonit a 23º 51′, encara trobarem a les Taules de Toledo (c. 1069) d’Azarquiel.

El capítol 4 està dedicat exclusivament a les matemàtiques desenvolupades per Ptolemeu. S’ha de dir que l’Almagest conté la primera taula trigonomètrica de la història i Dorce l’analitza perfectament. En primer lloc, s’ha de dir que la funció trigonomètrica grega per excel·lència era la corda, equivalent al doble del sinus de l’angle meitat. Ptolemeu parteix dels teoremes dels Elements d’Euclides (s. III aC) per determinar els costats del pentàgon, hexàgon, quadrat i pentàgon regulras o, el que és el mateix, les cordes dels angles de 36º, 60º, 90º i 72º. Determina la fórmula per trobar la corda de l’angle suplementari i la dels angles suma i diferència. Amb aquestes relacions, construeix una taula de sinus que va estar vigent fins ben entrat el segle XIV. També resol el teorema de Menelao en les seves versions plana i esfèrica. Amb aquest teorema, Ptolemeu pot calcular la declinació solar per qualsevol longitud solar donada i construeix una taula amb totes les correspondències entre les dues coordenades calculada sobre la base de la citada obliqüitat de l’eclíptica 23º 51′ 20″. L’Almagest continua amb els diferents models geomètrics que usa el grec per explicar els moviments dels astres i això estan dedicats els següents capítols del llibre. Aristòtil havia imposat al món el moviment circular uniforme dels cossos celests i això feia que fos força difícil explicar les uniformitats dels moviments dels astres. Apol·loni de Perga (s. III aC) havia suposat que la Terra estava al centre de l’univers i que, al voltant d’ella, en lloc de girar uniformement el sol, ho feia un punt virtual. A la seva vegada, aquest punt era centre de rotació del sol amb el que el moviment solar al voltant de la Terra s’explicava segons aquest engranatge de dues circumferències. Ptolemeu, en veure que la primavera i l’estiu sumaven més de la meitat de l’any i que la primavera és més llarga que l’estiu, va desplaçar el centre de l’òrbita solar del centre de la Terra i el va desplaçar un 4,17% de la seva posició. Aquest recurs el qual és equivalent al d’Apol·loni, també li va servir per la lluna i la resta de planetes afegint-hi epicicles als models. En els següents capítols, Dorce analitza l’arribada de l’Almagest al món àrab i les crítiques que va rebre dels astrònoms de l’observatori de Maraga (Iran) i els models alternatius de Nasîr al-Dîn al-Tûsî (1201-1274), Ibn al-Shâtir  (1304-1375). També fa un cop d’ull a la teoria de la trepidació andalusí, model que va arribar a les Taules astronòmiques de Barcelona que va fer compilar el rei Pere el Cerimoniós al segle XIV. El llibre acaba amb un capítol dedicat al decliu de la ciència ptolemaica i l’arribada del món copernicà defensat per Kepler i Galileu.

En definitiva, el llibre dóna una idea bastant clara dels aspectes més destacats de l’astronomia i trigonometria gregues i de la seva aplicació pràctica. És un llibre adequat com a font de documentació d’un treball de recerca o per aprendre una mica sobre la base de les matemàtiques.

Es pot eure una altra ressenya del llibre a la pàgina de “Divulgamat, Centro Virtual de Divulgación de las Matemáticas” ( http://divulgamat.ehu.es/weborriak/publicacionesdiv/libros/LiburuakDet.asp?Id=330 ).

FITXA TÈCNICA:

PUNTUACIÓ (sobre 5):

NIVELL: ESO/Batxillerat.     Nº PÀGINES: 185.        ISBN: 84-96566-08-0

EDITORIAL: Nívola