Category Archives: Plató

D.SUTTON. Sólidos platónicos y arquimedianos

Portada SOLIDOS PLATONICOS Y ARQUIMEDIANOSL’adjectiu “senzill” és el que millor s’adapta a aquest petit llibre de 63 pàgines que l’editorial Oniro va treure al mercat l’any 2005. A la contraportada podem llegir unes frases que ens fan una petita referència històrica del títol del llibre: “en la puerta de la Academia de Platón, donde se reunían los más ilustres filósofos de la antigua Grecia, había una inscripción que rezaba: ‘Que aquí no entre quien no sepa geometría’. Pues Platón y sus discípulos veían en la esfera y en los cinco políedros regulares -llamados sólidos platónicos- la máxima expresión de la belleza y la armonía cósmica. Y a la luz de la ciencia actual, las especulaciones de los antiguos filósofos adquieren nuevos y sorprendentes significados“. El llibre comença amb l’esfera, “símbol perfecte de la unitat” i després introdueix els cinc sòlids platònics: el tetràedre, l’hexàedre, l’octàedre, l’icosàedre i el dodecàedre. Explica que la paraula “políedre” prové del grec i que literalment significa “moltes cares” o “molts plans”. S’anomenen “sòlids platònics” perquè la primera descripció en la que se’ls tracta com a grup es troba al Timeu de Plató. Llegint A History of Greek Mathematics, la fantàstica obra en dos volums de Sir Thomas Heath, trobem que l’origen dels cinc políedres ve documentat en el Resum de Proclus, on trobem que Pitàgores va descobrir la construcció dels cinc políedres regulars juntament amb els nombres irracionals: després d’aquests [Tales i Ameristus o Mamercus], Pitàgores va transformar l’estudi de la geometria en un ensenyament liberal, examinant els principis de la ciència des del començament i provant els teoremes d’una manera inmaterial i intel·lectual: ell va ser el que va descobrir la teoria dels irracionals i la construcció de les figures còsmiques. El llibre de Sutton continua amb la descripció dels cinc cossos i la demostració de l’existència de només cinc complint que totes les seves cares i angles trièdrics han de ser iguals. Després de comentar la raó àuria i altres tipus de políedres, entra a detallar cadascun dels tretze cossos arquimedians, anomenats així perquè s’atribueix el seu descobriment a Arquimedes. També els descriu i dóna els seus desenvolupaments sobre el pla.

El llibre en sí no aporta gran cosa al que ja circula a altres llibres però tanmateix ofereix una visió senzilla que pot ser útil a qualsevol estudiant de l’ESO. No entra en massa tecnicisme i, fins i tot, el tractament de la dualitat entre els políedres el fa d’una manera força entenedora.

FITXA TÈCNICA:

PUNTUACIÓ (sobre 5):  

NIVELL: ESO.     Nº PÀGINES: 63.        ISBN: 84-9754-131-6

EDITORIAL: Oniro

“L’últim sopar”, un quadre de Salvador Dalí (1955)

Si algun dia visiteu Washington no us podeu perdre la National Gallery of Art (http://www.nga.gov/) on podreu gaudir d’una de les obres d’un dels nostres pintors més universals, Salvador Dalí (1904-1989). El quadre L’últim sopar el va pintar en 1955 i en ell representa la famosa escena bíblica sota una volta dodecaèdrica, símbol platònic de Déu. Dalí va representar a un Jesucrist transparent, ros, sense barba i ensenyant un pit, una imatge completament atípica al que estem acostumats.

Respecte del pintor: la vida de Dalí representa el surrealisme en ella mateixa: als cinc anys els seus pares el van portar a la tomba d’un germà seu i li van dir que ell era la seva reencarnació. La passió per la pintura li va venir de petit i als 12 anys ja pintava al taller de l’artista Ramon Pichot i als 15 va poder exposar la seva obra a Figueres. Als 18 es va traslladar a Madrid per estudiar a la Real Academia de Bellas Artes de San Fernando on va coincidir amb personatges com Garcia Lorca i Buñuel. Les seves excentricitats cada cop més incipients van provocar la seva expulsió de l’Academia ja que ell no considerava que cap professor fos prou competent com per avaluar-lo.

PLATÓ – El Timeu (II)

La narració de Timeu segueix amb l’assignació de cadascun dels políedres regulars als quatre elements fonamentals. Ja ha deixat clar que el cinquè cos es correspon amb l’univers i, per tant, el dodecàedre no entra en aquest repartiment. Les paraules de Timeu són les següents:

En primer lloc, tractaré la figura primera i més petita l’element de la qual és el triangle que té una hipotenusa d’una extensió que és el doble del costat menor. Quan s’uneixen dos d’aquests per la hipotenusa i això succeeix tres vegades de manera que les hipotenuses i els catets menors s’orientin cap a un mateix punt com a centre, es genera un triangle equilàter dels sis. La unió de quatre triangles equilàters segons tres angles plans genera un angle sòlid, el següent del més obtús dels angles plans. Quatre angles d’aquests generen la primera figura sòlida la qual divideix tota la superfície de l’esfera en parts iguals i semblants. El segon element es composa dels mateixos triangles quan s’uneixen vuit triangles equilàters i es construieix un angle sòlid a partir de quatre angles plans. Quan s’han generat sis d’aquests angles, es completa així el segon cos. El tercer cos neix de cent vint elements ensamblats i dotze angles sòlids, cadascun d’ells rodejat de cinc triangles equilàters plans i amb vint triangles equilàters per base. La funció d’un dels triangles elementals es va completar quan va generar aquests elements; el triangle isòsceles, d’altra banda, va generar el quart element, per composició de quatre triangles i reunió dels seus angles rectes en el centre per formar un quadrat equilàter. La reunió de sis figures semblants d’aquest tipus va produir vuit angles sòlids cadascun d’ells composat segons tres angles plans rectes. La figura del cos creat va ser cúbica amb sis cares de quadrats equilàters. Però encara hi havia una cinquena composició, el déu la va fer per a l’univers quan el va pintar. […] Assignem doncs la figura cúbica a la terra ja que és la menys mòbil dels quatre tipus i la més maleable d’entre els cossos i és de tota necessitat que tals qualitats les posseeixi l’element que tingui les cares més estables. Entre els triangles suposats al començament, la superfície de costats iguals és per naturalesa més segura que la de costats desiguals i la superfície quadrada formada per dos equilàters està sobre la seva base necessàriament de forma més estable que un triangle, tant en les seves parts com en el conjunt. Per tant, si atribuïm aquesta figura a la terra salvem el discurs probable i, a més a més, de la resta, a l’aigua, la que es mou amb menys dificultat; la més mòbil, al foc i la intermitja, l’aire i, un altre cop, la més petita, al foc, la més gran a l’aigua i la mitjana a l’aire i, finalment, la més aguda al foc, la segona més aguda a l’aire i la tercera a l’aigua. En tot això és necessari que la figura que té les cares més petites sigui per naturalesa la més mòbil, la més tallant i aguda de totes en tot sentit i, a més a més, la més liviana, doncs està composada del mínim nombre de parts semblants, i que la segona tingui aquestes mateixes qualitats en segon grau i la tercera, en tercer. Sigui doncs segons el raonament correcte i el probable, la figura sòlida de la piràmide element i llavor del foc, diguem que la segona en la generació correspon a l’aire i la tercera, a l’aigua.

PLATÓ – El Timeu (I)

Si en la història de la matemàtica hi ha una obra que reflexa clarament la conjunció entre la filosofia i la geometria és, sense cap tipus de dubte, el Timeu de Plató. L’acció del diàleg se situa a l’Atenes del 420 aC i consisteix en un diàleg entre Sócrates, Críties i Timeu. En la introducció al diàleg que fan M.A. Duran i F. Lisi a l’edició castellana de l’esditorial Gredos, llegim com Sócrates, mestre de Plató, adopta una posició secundària i se li presuposa una edat que ronda els 50 anys. Per la seva banda, Timeu és natural de Lócride i és un polític d’edat avançada que ha ocupat alts càrrecs públics. Finalment, Críties és un ciutadà important d’Atenes que es troba en la cima de la seva carrera política. El siàleg en sí mateix comença amb un resum de la conversa mantinguda el dia abans sobre l’estat ideal i avança amb éls arguments de Timeu dividits en tres grans blocs: les obres de la raó, la contribució de la necessitat i la barreja de la intel·ligència i de la necessitat. En el segon bloc, Timeu descriu la situació caòtica de l’univers abans de la seva creació i continua amb l’explicació de l’estructura dels elements, tots ells formats a partir de triangles. El text que hi fa referència és el següent:

En primer lloc, crec que per qualsevol està més enllà de tot dubte que el foc, la terra, l’aigua i l’aire són cossos. Ara bé, tota forma corporal té també profunditat. I, a més a més, és de tota necessitat que la superfície envolti la profunditat. La superfície d’una cara plana està composada de triangles. Tots els triangles es desenvolupen a partir de dos, cadascun dels quals amb un angle recte i els altres dos aguts. Un té a ambdós costats una fracció d’angle recte dividit per costats iguals, l’altre parts desiguals d’un angle recte atribuïda a costats desiguals [isòsceles i escalè]. En el nostre camí segons el discurs probable acompanyat de necessitat, suposem que aquest és el principi del foc i dels altres cossos. Però els altres principis anteriors a aquests els coneix déu i a aquell d’entre tots els homes a qui ell estima. Certament, hem d’explicar quins serien els quatre cossos més perfectes que malgrat ser diferents entre ells, podrien néixer els uns dels altres quan es desintegren. En efecte, si ho aconseguim, tindrem la veritat sobre l’origen de la terra i el foc i dels seus mitjans proporcionals. Doncs no coincidirem  amb ningú en que hi ha cossos visibles més bells que d’altres dels quals cadascun representa un gènere particular. Aleshores, hem d’esforçar-nos per composar aquests quatre gèneres de cossos d’extraordinària bellesa i dir que hem captat la seva naturalesa suficientment. Dels dos triangles, l’isòsceles va tenir la sort de tenir una naturalesa única, però les d’aquell l’angle recte del qual està contingut en costats desiguals van ser infinites. Per a començar bé, s’ha de fer una altra elecció, és necessari escollir en la classe dels triangles d’infinites formes, aquell que sigui el més perfecte. El que eventualment estigui en condicions d’afirmar que el triangle per ell escollit és el més bonic per a la composició dels elements, imposarà la seva opinió, doncs no és cap adversari sinó un amic. Per la nostra part, nosaltres deixem de costat a la resta i suposem que en la multiplicitat dels triangles un és el més bell: aquell del qual surgeix en tercer lloc l’isòsceles. Però específicar el perquè exigeix un raonament major i els premis amistosos estan aquí per a qui posi a prova aquesta afirmació i descobreixi que és així definitivament. Per tant, siguin escollits dos triangles amb els quals el foc i els altres elements estan construïts: un d’ells isòsceles, l’altre amb un costat gran  el quadrat del qual és tres cops el quadrat del menor. Ara hem de preceisar més del que vam dir abans d’una forma poc clara. Doncs els quatre elements semblaven tenir el seu origen uns en els altres malgrat que aquesta aparença era falsa, doncs malgrat que els quatre elements neixen dels triangles que hem escollit, mentre que tres deriven d’un -el que té els costats desiguals-, el quart és l’únic que es composa del triangle isòsceles. Per tant, no és possible que mitjançant la disolució de tots en tots, molts de petits originin a uns pocs de grans i viceversa; però sí ho és en el cas de tres elements, perquè quan es disolen els grans d’aquells que per la seva naturalesa estan constituïts per un tipus de triangle, es composen molts de petits a partir d’ells que adopten les figures corresponents i, a la seva vegada, quan molts de petits es divideixin en triangles, a l’originar-se una quantitat de volum únic, podria donar lloc a una altra forma gran. Cartabón graduado.Aquesta és doncs la nostra teoria sobre la gènesi dels uns en els altres. A continuació hauríem de dir de quina manera es va originar la figura de cadascun dels elements i a partir de la un ió de quants triangles.

Timeu ha planetjat que els dos triangles primordials són els que es corresponen amb el joc de regles que habitualment tenim per casa. El primer dels triangles és el triangle rectangle isòsceles el qual equival a les dues meitats obtingudes al dividir un quadrat per la seva diagonal: el nostre escaire. L’altre, el dels costats desiguals, podem llegir com el quadrat del catet major és igual a tres vegades el quadrat del catet menor. Quin és aquest triangle? Suposem que anomenem bc als catets major i menor, respectivament. Quina serà la seva hipotenusa a? Pel teorema de Pitàgores, a2 = b2 + c2. Però b= 3c2 i, per tant, a2 = 4c2. Finalment, fent arrels quadrades, tenim que a = 2c. Per tant, el nostre triangle rectangle és tal que el catet menor és la meitat de la hipotenusa, és a dir, cadascuna de les dues meitats que s’obtenen al dividir un triangle equilàter pel seu eix de simetria: el nostre cartabò.