Author Archives: cdorce

“John Wallis”, un quadre de Godfrey Kneller (1701)

John Wallis 305è ANIVERSARI DE LA MORT DE JOHN WALLIS

Avui fa 305 anys de la mort d’un dels matemàtics anglesos més importants abans de l’aparició d’Isaac Newton. Seguint les paraules de Howard Eves a la seva An Introduction to the History of Mathematics, Wallis va néixer en 1616 i va ser un dels matemàtics més hàbils i originals de la seva època i un escriptor erudit en diversos camps. Va ser alumne de William Oughtred (1574-1660) i en 1649 va ser nomenat professor de geometria a Oxford en una plaça que mantindria fins el dia de la seva mort, el 28 d’octubre de 1703. Va introduir les sèries numèriques en l’anàlisi matemàtica i la seva tasca en aquest camp va fer molt en la preparació del camí del gran Newton.

Wallis va ser un dels primers en estudiar les còniques com a corbes de segon grau en lloc d’únicament com les seccions d’un con recte. En 1655 va publicar la seva Arithmetica infinitorum (dedicada a Oughtred), llibre que va esdevenir un tractat habitual en les lliçons d’aritmètica durant força anys. En aquesta obra hi trobem que l’àrea compresa per la corba y = xn. l’eix d’abscisses i les ordenades x = 0 i x = 1 és 1/(1+n) per qualsevol n racional diferent de -1. També va ser el primer en explicar amb tot detall el significat dels exponents racionals i dels negatius i va introduir el símbol actual per l’infinit.

Va aproximar el valor de pi mitjançant sèries infinites com la trobada en el càlcul de l’àrea d’un quadrant de cercle:

Pi/4 = (2·4·4·6·6·…)/(3·3·5·5·7·…)

a partir d’anar avaluant l’àrea entre les abscisses 0 i 1 de les corbes y = (1 – x2)n per n = 0, 1, 2…

Respecte del pintor: Sir Godfrey Kneller va néixer el 8 d’agost de 1646 a Lübeck, Alemanya. Va estudiar al costat de pintors de la talla de Ferdinand Bol (1616-1680) i Rembrandt van Rijn (1606-1669) esdevenint posteriorment un dels grans retratistes dels segles XVII-XVIII. Sempre va estar al costat de grans reis europeus com Guillem III d’Orange, Carles II i George I d’Anglaterra i va arribar a ostentar un títol nobiliari. Unes febres molt fortes el van portar a la mort el 19 d’octubre de 1723 i va ser enterrat a l’església de Twickenham.

B.DU MONT. “Ulugh Beg”, Investigación y Ciencia – Temas 41: Ciencia medieval, pàgs. 52-61

 559è ANIVERSARI DE LA MORT D’ULUGH BEG

El tercer número de la revista Temas d'”Investigación y ciencia” de l’any 2005 va estar dedicat a la ciència medieval. L’exemplar està dividit en tres grans blocs: Medicina i Ciències Naturals, Astronomia i, el tercer, Arquitectura i Tècnica. Dins del segon bloc, l’astronomia islàmica i Ulugh Beg són els grans protagonistes i m’ha semblat addient dedicar avui a aquest personatge el post d’avui, donat que estem en el 559è aniversari de la seva mort. Segurament, el número 559 no és l’ideal per celebrar res ja que estem acostumats a celebrar centenaris i dates de les quals fa 25, 50 o 75 anys que han passat però mira, sempre és interessant fer un cop d’ull al passat amb qualsevol excusa. Per cert, 559 és igual a 13 per 43 amb el que, si algú no està convençut, és una xifra d’anys molt bonica i curiosa.

L’article comença amb la següent frase la qual és tota una declaració d’intencions: “Uno de los astrónomos más famosos de Oriente en el siglo XV, este soberano hizo construir en Samarcanda un gran observatorio astronómico y realizó una competente investigación del firmamento“. La introducció està dedicada a Timur Lang (1337-1405), avi d’Ulugh Beg, qui va ser un militar mongol que va aconseguir restaurar l’antic imperi del gran Ghengis Khan: va invair i aniquilar tots els estats àrabs des de les muntanyes Urals fins a Síria i des de Turquia fins a l’Índia. Timur Lang va fer de Samarcanda la seva capital i a ella feia traslladar a tots els filòsofs, científics, arquitectes i matemàtics que trobava a les ciutats que arrassava, violava i aniquilava amb el que Samarcanda va esdevenir un dels centres culturals més importants del món. A més a més, la destrucció de les ciutats capdals de la ruta de la seda van provocar que tot el comerç passés per la nova capital amb el que va passar a ser el nus comercial per la que totes les caravanes europees, xineses i índies havien de passar. Timur Lang va escollir com a futur sobirà pel seu gran imperi al seu net, un tal Muhammad Taragau, nascut el 22 de març de 1394 a Sultanieh i que de seguida va adoptar el nom  de Gran Príncep, és a dir, Ulugh Beg. Malgrat que a l’edat de 10 anys el van casar amb una princesa mongola, Ulugh Beg va instruir-se en una cort d’elevat nivell cultural i va adquirir coneixements en matemàtiques, astronomia, filosofia, política, història, medicina i literatura àrab i persa amb les quals es va fer càrrec de l’imperi a la mort del seu pare en 1409. Ulugh Beg va rebre un estat política i administrativament molt ben organitzat i va proseguir la construcció de canals, vies de circulació, parcs, mesquites, madrasses, palaus… convertint Samarcanda en una de les més boniques ciutats del continent. Tanmateix, la feina com a cap d’estat no va impedir que se seguís dedicant a l’estudi.

Ulugh Beg observatory.JPGL’article continua amb un apartat dedicata a les “madrasses d’Ulugh Beg”. Els edificis construïts per Ulugh Beg ens donen una idea de l període en el qual va governar. Les madrasses eren escoles superiors on els alumnes quedaven internats i les que ell va fer construir són un símbol d’hegemonia i bonança econòmica. Se sap que a la madrassa de Samarcanda s’ensenyava teologia, astronomia, matemàtiques, lògica, geometria, geografia, medicina, dret, història, literatura i poesia i la llegenda li atribueix una biblioteca de 15.000 llibres. Fins i tot les dones van poder entrar en algunes d’aquestes madrasses malgrat que és molt difícil saber en quines condicions.

Els astrònoms col·laboradors d’Ulugh Beg també són objecte d’estudi: “el poeta persa Jameh (1414-1492) asistió a las lecciones de Salah al-Milla al-Din Musa, que provenía de Anatolia y que, por esta razón, era llamado Kazi Zadeh al-Rumi (1364-1436). Enviado por su maestro al-Fanari a Samarcanda, se encontró, entrado ya en los cuarenta años, en 1410, con Ulugh Beg, quien lo nombró profesor suyo y astrónomo principal“. Aquest personatge va escriure un Comentari al tractat sobre l’obra astronòmica d’al-Khwârizmî de Xagmini (m. 1220) i també un tractat sobre la determinació de la direcció de la Meca i el càlcul de la determinació del sin 1º. Tanmateix, el personatge dels cercles d’Ulugh Beg que mereix més renom és Jamshïd al-Dîn al-Kashî (1380-1429) a qui l’artile li dedica un parell de columnes.

Ulugh-beg Madrassa courtyard.JPGA partir d’aquí, l’obra d’Ulugh Beg en sí és la gran protagonista. En 1908 es va descobrir l’observatori que va fer fundar on es conserva encara el sextant Fahrí que s’hi va construir. Només hi queda la part soterrada en un soterrani de 2,5 metres d’ample i una profunditat d’11 metres. Entre les dues parets laterals (primera figura: imatge de Commons) hi ha un doble arc meridià de plaques de marbre d’un gruix de deu centímetres que contenen una escala graduada d’altures. En un dels arcs es distingeixen graduacions amb xifres àrabs i s’hi pot observar la graduació des de 58º a 81º.

La gran obra astronòmica d’Ulugh Beg és el seu zîj: unes taules astronòmiques amb unes instruccions de construcció i ús. Aquesta obra és el resultat complert de 30 anys d’observacions i representa el tractat d’astronomia de més precisió fins al moment. L’article descriu detalladament cadascun dels quatre llibres del zîj: el primer dedicat als càlculs del calendari, el segon, obra d’al-Kashî, dedicat a la trigonometria plana i esfèrica; el tercer on es troba un catàleg d’estrelles que conté observacions fins el 28 de gener de 1444 i; l’últim, dedicat  a l’astrologia matemàtica.

No explicaré el final de l’article que dedica dos petits apartats a la divulgació de les taules d’Ulugh Beg i a la decadència de l’astronomia a Samarcanda però, donat que conmemorem els 559 anys de la seva mort, sí faré referència a l’apartat sobre aquest tema. “Cuando el 12 de marzo de 1447 murió Shah Ruj en el oeste de Persia, Gauher Shad colocó a Abd al-Latif, hijo de Ulugh Beg, al frente del ejército. Como único hijo vivo de Shah Ruj y único nieto de Timur, Ulugh Beg exigió el mando del imperio mongol, pero no encontró apoyo. En las luchas sucesorias se alió Abd al-Latif con Hodsha Ubaidullah Akrar, jefe de la orden de Nakshband. El pulso lo ganó Abd al-Latif contra su padre. Ulugh Beg y su hijo Abd al-Aziz se rindieron al vencedor. Aquél pidió gracia y prometió que únicamente se dedicaría a la ciencia. Abd al-Latif se lo concedió y lo mandó de peregrinación a La Meca. Pero, a la vez y a escondidas de Ulugh Beg, convocó un juicio según la sharia. Los dignatarios religiosos elaboraron un decreto según el cual los imanes nombrados por Ulugh Beg en Samarcanda debían devolver sus credenciales. Además, reconocieron a un comerciante llamado Abbas, cuyo padre había sido ajusticiado por Ulugh Beg, el derecho a la venganza de sangre. Ya durante el primer día de la peregrinación, el 27 de octubre de 1449, Ulugh Beg, acompañado de una pequeña escolta, fue desviado mediante engaño hacia la aldea de Begum, 15 kilkómetros al sur de Samarcanda, donde lo esperaban Abbas y los suyos. El vengador lo decapitó de un solo golpe de espada. La cabeza de Ulugh Beg fue expuesta sobre el iwan de su madrasa en Samarcanda“. Amb aquesta cruel imatge va acabar la vida d’un dels sobirans que més va fer per la ciència. Si algun dia aneu a Samarcanda podreu admirar la seva obra. Quan hi estigueu davant, sobraran les paraules per definir-la.

“Galileu Galilei”, al Youtube (I)

Al canal de Historia (http://www.canaldehistoria.es/es/index2.php), van emetre un interessant documental titulat “Galileo y el telescopio del pecado”, presentat per l’americà Hunter Ellis. Veient-lo, podem seguir una mica de la història que va viure l’italià en la cort papal i que el va portar a haver de renegar de la seva obra. La versió que poso aquí és la que he trobat al Youtube.

[kml_flashembed movie="http://www.youtube.com/v/4ZjE3-w3YxI" width="425" height="350" wmode="transparent" /]

Continua al següent post.

 

“L’últim sopar”, un quadre de Salvador Dalí (1955)

Si algun dia visiteu Washington no us podeu perdre la National Gallery of Art (http://www.nga.gov/) on podreu gaudir d’una de les obres d’un dels nostres pintors més universals, Salvador Dalí (1904-1989). El quadre L’últim sopar el va pintar en 1955 i en ell representa la famosa escena bíblica sota una volta dodecaèdrica, símbol platònic de Déu. Dalí va representar a un Jesucrist transparent, ros, sense barba i ensenyant un pit, una imatge completament atípica al que estem acostumats.

Respecte del pintor: la vida de Dalí representa el surrealisme en ella mateixa: als cinc anys els seus pares el van portar a la tomba d’un germà seu i li van dir que ell era la seva reencarnació. La passió per la pintura li va venir de petit i als 12 anys ja pintava al taller de l’artista Ramon Pichot i als 15 va poder exposar la seva obra a Figueres. Als 18 es va traslladar a Madrid per estudiar a la Real Academia de Bellas Artes de San Fernando on va coincidir amb personatges com Garcia Lorca i Buñuel. Les seves excentricitats cada cop més incipients van provocar la seva expulsió de l’Academia ja que ell no considerava que cap professor fos prou competent com per avaluar-lo.

L.EULER. Elements d’Àlgebra (I)

Leonhard Euler by Handmann .pngQuan Leonhard Euler tenia 63 anys, va veure la llum els seus Elements d’Àlgebra (1770), publicats en alemany per la Reial Acadèmia de les Ciències de Sant Petersburg. El llibre fa un repàs a diversos temes aritmètics, algebraics i d’anàlisi com són les potències i arrels, els logaritmes, les progressions aritmètiques i geomètriques, la resolució d’equacions… L’obra està estructurada en dues parts, la primera dedicada a l'”anàlisi de quantitats determinades” i la segona dedicada a les “indeterminades”. Per començar a fer-nos una idea de l’abast del llibre, aquí us deixo la traducció al català del primer capítol de la primera seció (“sobre els diferents mètodes de càlcul de quantitats simples”) de la primera part:

Capítol I: Sobre les Matemàtiques en general

Article I: Anomenem magnitud o quantitat a tot allò que pot créixer o decréixer. Una suma de diners és doncs una quantitat ja que la podem fer augmentar o disminuir. Passa el mateix amb el pes i altres coses d’aquesta naturalesa.

2. És evident a partir d’aquesta definició que els diferents tipus de magnituds són tan variats que ens provoca gran dificultat per poder-les enumerar: i això és l’origen de les diferents branques de la Matemàtica, cadascuna de les quals dedicada a un tipus particular de magnitud. Les Matemàtiques, en general, és la ciència de la quantitat; o, la ciència que investiga els significats de la mesura de la quantitat.

3. Ara, no podem mesurar o determinar cap quantitat excepte si considerem alguna altra quantitat del mateix tipus com coneguda i assenyalant la seva mútua relació. Per exemple, si fos proposat que es determinés la quantitat d’una suma de diners, hauríem de prendre alguna peça monetària coneguda com és un lluís, una corona, un ducat o qualsevol altra moneda i trobar quantes d’elles estan contingudes en la suma donada. De la mateixa manera, si fos proposada la determinació d’una quantitat de pes, hauríem de prendre un cert pes conegut; per exemple, una lliura, una unza, etc. i aleshores mirar quantes vegades un d’aquests pesos està contingut en el que volem trobar. Si volem mesurar una longitud o extensió, hem d’usar una longitud coneguda tal com el peu.

4. Per tant, la determinació o mesura de les magnituds de qualsevol tipus es redueix a: fixar una certa magnitud coneguda de la mateixa espècie que la que volem determinar i considerar-la com si fos la mesura o unitat; aleshores, determinar la proporció de la magnitud proposada respecte de la magnitud coneguda. Aquesta proporció està sempre representada pels nombres; per tant, un nombre no és res més que la proporció d’una magnitud respecte d’una altra d’arbitrària la qual s’assumeix com la unitat.

5. D’això se’n desprèn que totes les magnituds han de ser expressades amb nombres i que la fundació de totes les Ciències Matemàtiques ha de partir d’un tractat complet sobre els nombres i d’un examen acurat dels possibles mètodes de càlcul diferents. Aquesta part fonamental de les matemàtiques s’anomena Anàlisi o Àlgebra.

6. En Àlgebra doncs, considerem només els nombres que representen quantitats sense reparar en els diferents tipus de quantitats. Aquests són l’objecte d’estudi d’altres branques de les matemàtiques.

7. L’Aritmètica tracta els nombres en particular i és la ciència dels nombres pròpiament dita; però aquesta ciència s’extén només a certs mètodes de càlcul que passen a la pràctica habitual: l’Àlgebra, pel contrari, comprèn en general tots els casos que poden existir en la doctrina i el càlcul dels nombres.

 

PLATÓ – El Timeu (II)

La narració de Timeu segueix amb l’assignació de cadascun dels políedres regulars als quatre elements fonamentals. Ja ha deixat clar que el cinquè cos es correspon amb l’univers i, per tant, el dodecàedre no entra en aquest repartiment. Les paraules de Timeu són les següents:

En primer lloc, tractaré la figura primera i més petita l’element de la qual és el triangle que té una hipotenusa d’una extensió que és el doble del costat menor. Quan s’uneixen dos d’aquests per la hipotenusa i això succeeix tres vegades de manera que les hipotenuses i els catets menors s’orientin cap a un mateix punt com a centre, es genera un triangle equilàter dels sis. La unió de quatre triangles equilàters segons tres angles plans genera un angle sòlid, el següent del més obtús dels angles plans. Quatre angles d’aquests generen la primera figura sòlida la qual divideix tota la superfície de l’esfera en parts iguals i semblants. El segon element es composa dels mateixos triangles quan s’uneixen vuit triangles equilàters i es construieix un angle sòlid a partir de quatre angles plans. Quan s’han generat sis d’aquests angles, es completa així el segon cos. El tercer cos neix de cent vint elements ensamblats i dotze angles sòlids, cadascun d’ells rodejat de cinc triangles equilàters plans i amb vint triangles equilàters per base. La funció d’un dels triangles elementals es va completar quan va generar aquests elements; el triangle isòsceles, d’altra banda, va generar el quart element, per composició de quatre triangles i reunió dels seus angles rectes en el centre per formar un quadrat equilàter. La reunió de sis figures semblants d’aquest tipus va produir vuit angles sòlids cadascun d’ells composat segons tres angles plans rectes. La figura del cos creat va ser cúbica amb sis cares de quadrats equilàters. Però encara hi havia una cinquena composició, el déu la va fer per a l’univers quan el va pintar. […] Assignem doncs la figura cúbica a la terra ja que és la menys mòbil dels quatre tipus i la més maleable d’entre els cossos i és de tota necessitat que tals qualitats les posseeixi l’element que tingui les cares més estables. Entre els triangles suposats al començament, la superfície de costats iguals és per naturalesa més segura que la de costats desiguals i la superfície quadrada formada per dos equilàters està sobre la seva base necessàriament de forma més estable que un triangle, tant en les seves parts com en el conjunt. Per tant, si atribuïm aquesta figura a la terra salvem el discurs probable i, a més a més, de la resta, a l’aigua, la que es mou amb menys dificultat; la més mòbil, al foc i la intermitja, l’aire i, un altre cop, la més petita, al foc, la més gran a l’aigua i la mitjana a l’aire i, finalment, la més aguda al foc, la segona més aguda a l’aire i la tercera a l’aigua. En tot això és necessari que la figura que té les cares més petites sigui per naturalesa la més mòbil, la més tallant i aguda de totes en tot sentit i, a més a més, la més liviana, doncs està composada del mínim nombre de parts semblants, i que la segona tingui aquestes mateixes qualitats en segon grau i la tercera, en tercer. Sigui doncs segons el raonament correcte i el probable, la figura sòlida de la piràmide element i llavor del foc, diguem que la segona en la generació correspon a l’aire i la tercera, a l’aigua.

P.FERMAT – L’equació de Pell (II)

El mateix mes de febrer de 1657, Fermat va enviar una carta a Bernanrd Frénicle de Bessy (c. 1606 – 1675) preguntant-li el mateix problema:

Cada nombre no quadrat és de tal naturalesa que un pot trobar una infinitud de quadrats pels quals pots multiplicar el nombre donat i si li afegeixes una unitat, obtenir un quadrat per resultat.

Per exemple: 3 és un nombre no quadrat que si multipliquem pel quadrat 1, dóna 3, i afegint-li la unitat, dóna 4, que és un quadrat.

El mateix 3, multiplicat per 16, que és un quadrat, dóna 48 i amb la unitat afegida dóna 49, que és un quadrat.

Hi ha una infinitud de quadrats que multiplicats pel 3 amb una unitat afegida donen un nombre quadrat.

Demano una regla general, -donat un  nombre no quadrat, trobar quadrats que multiplicats per un nombre donat donin un quadrat a l’afegir-los a una unitat.

Per exemple, quin és el menor quadrat que multiplicat per 61 amb una unitat afegida donarà un quadrat? A més a més, quin és el menor quadrat que multiplicat per 109 amb una unitat afegida donarà un quadrat?

Si no em dones la solució general, aleshores dóna una solució particular d’aquests dos casos els quals, els he escollit petits per tal de no posar gran dificultat. Després que hagi rebut la teva resposta, et proposaré una anltra matèria. No cal dir que la meva proposició és trobar enters que resolguin la qüestió ja que en el cas de les fraccions, el pitjor dels aritmètics podria trobar la solució.

Com a curiositat es pot dir que el matemàtic francès Frénicle de Bessy es va dedicar a la teoria de nombres i va ser capaç de resoldre molts dels problemes plantejats per Fermat.

“Claudi Ptolemeu”, una excentricitat del Youtube

L’altre dia, navegant pel Youtube, em vaig trobar amb una excentricitat digne de citar: no m’imaginava que el sistema epicicle-deferent que Apol·loni de Perga va inventar al segle III aC i que Ptolemeu va posar en pràctica en el seu Almagest donés tant de sí.

En primer lloc començarem explicant quin és aquest sistema que tant es va anar repetint al llarg de la història de l’astronomia. Per representar-lo, he agafat aquesta imatge de la pàgina web  http://nrumiano.free.fr/Ecosmo/cg_history.html perquè crec que il·lustar perfectament el model. The Ptolemaic systemPtolemeu creia que la Terra estava al centre de l’univers i que tots els planetes, el sol i la lluna giraven al seu voltant. El problema dels astrònoms és que, per exemple, si el sol rotés sempre a la mateixa velocitat, és a dir, amb el moviment circular uniforme predicat per Aristòtil, les quatre estacions de l’any haurien de ser iguals. A l’Almagest, Ptolemeu estudia perfectament la durada de les estacions i veu com la primavera i l’estiu en conjunt duren més que la tardor i l’hivern i que, la primavera és més llarga que l’estiu. Aquest fet fàcilment comprovable va fer que Ptolemeu col·loques al cel un sistema de deferents i epicicles que permetessin salvar la irregularitat aparent del moviment solar. A la il·lustració, mirem la situació dels planetes Mercuri i Venus. Així com la lluna i el sol estan situats sobre una circumferència de centre a la Terra, aquests dos planetes estan situats en una circumferència el centre de la qual està col·locat en una altra circumferència anomenada deferent. Ordenem les idees. Al voltant de la Terra, un punt virtual rota amb velocitat circular uniforme seguint una circumferència anomenada deferent. Al mateix temps, en aquest punt virtual col·loquem el centre d’una altra circumferència (que estarà contínuament rotant al voltant de la Terra) que anomenarem epicicle. Ara, fem que el planeta comenci a girar amb velocitat uniforme. El resultat final és que els planetes, vistos des de la Terra, no aniran sempre a la mateixa velocitat i que, fins i tot, en algun moment retrocediran en la seva trajectòria. Amb aquest procediment i un altre anomenat “equant”, Ptolemeu va ser capaç d’explicar amb gran precisió tots els moviments dels astres i aquests models van estar vigents fins que al segle XVII Johannes Kepler descobrís l’el·lipse en els cels.

Doncs bé, l’arxiu del Youtube parteix d’un article de R.Hanson titulat “The Mathematical Power of Epicyclical Astronomy” de la revista Isis 51 (1960), pàgs. 150-158, on l’autor defensa que es pot dibuixar qulsevol cosa a partir d’anar afegint epicicles i més epicicles. Els autors del video Carman i Serra, mitjançant 1.000 epicicles, han aconseguit dibuixar un dels personatges més característics de Springfield. Vegem-ho:

[kml_flashembed movie=”http://es.youtube.com/v/NvCdsnyx7Qk” width=”425″ height=”350″ wmode=”transparent” /]

No és fantàstic! Ptolemeu no coneixia la televisió i molt menys els Simpson i possiblement era incapaç d’imaginar-se més de tres epicicles junts però… és increïble fins a on pot arribar la ment humana.

J.SAMSÓ. “Calendarios populares y tablas astronómicas”. Historia de la Ciencia Árabe, pàgs. 127-162

En 1981, la Real Academia de Ciencias Exactas, Físicas y Naturales va publicar a Madrid un volum dedicat a la iència àrab i que va comptar amb la participació de les primeres espases investigadores de la universitat espanyola: J.Vernet, M.A.Català, M.V.Villuendas, J.M.Torroja i el protagonista aquí: Julio Samsó. L’article està estructurat en quatre seccions: una dedicada als calendaris populars, una segona a la ciència del miqât, la tercera a les taules astronòmiques i un colofó final per tancar-lo.

Sota el títol de “Calendarios populares”, Samsó ens comença explicant quins eren els coneixements que els àrabs pre-islàmics tenien sobre el calendari. A l’Iraq del segle IX es van començar a escriure uns llibres que recollien la tradició oral del carrer i posaven de manifest quin tipus de calendari s’usava a l’orient mitjà: l’any quedava dividit en 27 períodes de 13 dies i un més de 14. Aquest sistema calendàric es coneixia amb el nom dels anwâ’ i no sembla ser invent àrab ja que d’altres cultures també el feien servir. Aquests anwâ’ es van anar desenvolupant i els trobem molt recentment en els Calendaris del Pagès catalans, on es baregen les prediccions astronòmiques amb les supersticions meteorològiques, agrícoles, astrològiques… Tal i com remarca Samsó, aquests calendaris plantegen el problema d’una possible influència grega tal i com se’ns mostra al Kitâb al-anwâ’ de Ibn Qutayba (s. IX) on hi ha una divisió de l’any solar en quatre estacions. Els anwâ’ van caure en desús amb el restabliment del primitiu calendari lunar per part de les cúpules islàmiques. La segona secció està dedicada al miqât i totes aquelles components astronòmiques relacionades amb la religió. Per exemple, un bon musulmà ha de resar en direcció a la Meca i això implica el càlcul de l’azimut de l’alquibla. L’alquibla està marcada a les mesquites mitjançant el conegut mihrâb. A l’estat espanyol, la gran mesquita de Còrdova té un mihrâb orientat segons les tradicions orientals amb el que els fidels es veien abocats a resar cap al sud. Aquesta determinació va ser el focus d’atenció de molts astrònoms i matemàtics tals com al-Khwârizmî (s. IX), al-Battânî (m. 929), al-Nayrîzî (s. X), al-Bîrûnî (973-1048), al-Marrâkushî (fl. 1275-1282) o al-Khalîlî (fl. c. 1365). Un altre dels grans problemes religiosos musulmans és la determinació a les hores hàbils d’oració. Els astrònoms van elaborar taules de mîqât que donaven l’angle horari per a una determinada latitud en funció de l’alçada del sol o d’una estrella.

Click to see larger image.Tanmateix, la secció més important de l’article és, sense cap tipus de dubte, la de les “Taules astronòmiques (zîdjs)”. La paraula zîdj deriva del pahleví zîk que tal com assenyala Samsó, és l’entramat usat per a teixir d’on proé la taula numèrica les línies de la qual s’assemblen  a les línies de l’entramat. Habitualment, un zîdj és un manual de taules astronòmiques amb uns cànons amb les instruccions d’ús. Al principi del segle VIII, els àrabs desenvolupen una astronomia d’arrels gregues però directament relacionada amb la tradició indo-iraniana. El primer zîdj escrit en àrab (i que no es conserva) és el Zîdj al-Arkand, compilat a la regió índia del Sind l’any 735 i fonamentat en el Khandakhâdyayaka (635) de Brahmagupta. Entre mig d’aquest dos, el Zîdj al-Shâh (any 679) circulava en els cercles astronòmics en la seva versió pahleví. Aquestes dues obres van introduir al món musulmà l’astrologia de les grans conjuncions inventada a l’Iran sasànida. Després d’aquestes referències, apareix el tercer gran bloc de zîdjs àrabs: la tradició del Sindhind. Cap a l’any 773, el califa al-Mansûr va rebre a Bagdad una ambaixada índia amb la que viatjava un astrònom expert en els sistemes calendàrics i astronòmics indis. Segurament, aquest personatge es va quedar a la capital califal i el Sindhind va ser traduït a l’àrab amb la col·laboració dels astròlegs Muhammad ibn Ibrâhîm al-Fazârî i Ya’qûb ibn Târiq. Tanmateix, la versió més famosa del Sindhind és la realitzada per al-Khwâriamî. Samsó li dedica quatre pàgines i fa una primera aproximació amb la qual un s’emporta una idea clara i concisa del que té al davant. L’article segueix amb la descripció del Zîdj al-Mumtahan de Yahyâ ibn Abî Mansûr (m. c. 832) a partir de les seves pròpies observacions a Bagdad i les de al-Marwarrûdî a Damasc. Durant el mateix segle IX van haver altres obres similars on destaca la de Habash al-Hâsib (m. c. 864/74) on l’astrònom utilitza sense cap problema relacions trigonomètriques com la de sin a = sin b sin A, tg a = sin b tg A o cos A = cos a sin B, totes elles en un triangle esfèric. Samsó també fa aquí una descripció del zîdj i avança per la seva història fins a arribar al de Ibn al-Shâtir (c. 1305-c. 1375) qui va criticar l’Almagest de Ptolemeu i els seus models.

FITXA TÈCNICA:

PUNTUACIÓ (sobre 5):  (des de l’any 1981 aquest camp ha avançat molt)

NIVELL: ESO/Batxillerat.     Nº PÀGINES: 35.        ISSN: 84-600-2370-2

EDITORIAL: Real Academia de Ciencias Exactas, Físicas y Naturales

PLATÓ – El Timeu (I)

Si en la història de la matemàtica hi ha una obra que reflexa clarament la conjunció entre la filosofia i la geometria és, sense cap tipus de dubte, el Timeu de Plató. L’acció del diàleg se situa a l’Atenes del 420 aC i consisteix en un diàleg entre Sócrates, Críties i Timeu. En la introducció al diàleg que fan M.A. Duran i F. Lisi a l’edició castellana de l’esditorial Gredos, llegim com Sócrates, mestre de Plató, adopta una posició secundària i se li presuposa una edat que ronda els 50 anys. Per la seva banda, Timeu és natural de Lócride i és un polític d’edat avançada que ha ocupat alts càrrecs públics. Finalment, Críties és un ciutadà important d’Atenes que es troba en la cima de la seva carrera política. El siàleg en sí mateix comença amb un resum de la conversa mantinguda el dia abans sobre l’estat ideal i avança amb éls arguments de Timeu dividits en tres grans blocs: les obres de la raó, la contribució de la necessitat i la barreja de la intel·ligència i de la necessitat. En el segon bloc, Timeu descriu la situació caòtica de l’univers abans de la seva creació i continua amb l’explicació de l’estructura dels elements, tots ells formats a partir de triangles. El text que hi fa referència és el següent:

En primer lloc, crec que per qualsevol està més enllà de tot dubte que el foc, la terra, l’aigua i l’aire són cossos. Ara bé, tota forma corporal té també profunditat. I, a més a més, és de tota necessitat que la superfície envolti la profunditat. La superfície d’una cara plana està composada de triangles. Tots els triangles es desenvolupen a partir de dos, cadascun dels quals amb un angle recte i els altres dos aguts. Un té a ambdós costats una fracció d’angle recte dividit per costats iguals, l’altre parts desiguals d’un angle recte atribuïda a costats desiguals [isòsceles i escalè]. En el nostre camí segons el discurs probable acompanyat de necessitat, suposem que aquest és el principi del foc i dels altres cossos. Però els altres principis anteriors a aquests els coneix déu i a aquell d’entre tots els homes a qui ell estima. Certament, hem d’explicar quins serien els quatre cossos més perfectes que malgrat ser diferents entre ells, podrien néixer els uns dels altres quan es desintegren. En efecte, si ho aconseguim, tindrem la veritat sobre l’origen de la terra i el foc i dels seus mitjans proporcionals. Doncs no coincidirem  amb ningú en que hi ha cossos visibles més bells que d’altres dels quals cadascun representa un gènere particular. Aleshores, hem d’esforçar-nos per composar aquests quatre gèneres de cossos d’extraordinària bellesa i dir que hem captat la seva naturalesa suficientment. Dels dos triangles, l’isòsceles va tenir la sort de tenir una naturalesa única, però les d’aquell l’angle recte del qual està contingut en costats desiguals van ser infinites. Per a començar bé, s’ha de fer una altra elecció, és necessari escollir en la classe dels triangles d’infinites formes, aquell que sigui el més perfecte. El que eventualment estigui en condicions d’afirmar que el triangle per ell escollit és el més bonic per a la composició dels elements, imposarà la seva opinió, doncs no és cap adversari sinó un amic. Per la nostra part, nosaltres deixem de costat a la resta i suposem que en la multiplicitat dels triangles un és el més bell: aquell del qual surgeix en tercer lloc l’isòsceles. Però específicar el perquè exigeix un raonament major i els premis amistosos estan aquí per a qui posi a prova aquesta afirmació i descobreixi que és així definitivament. Per tant, siguin escollits dos triangles amb els quals el foc i els altres elements estan construïts: un d’ells isòsceles, l’altre amb un costat gran  el quadrat del qual és tres cops el quadrat del menor. Ara hem de preceisar més del que vam dir abans d’una forma poc clara. Doncs els quatre elements semblaven tenir el seu origen uns en els altres malgrat que aquesta aparença era falsa, doncs malgrat que els quatre elements neixen dels triangles que hem escollit, mentre que tres deriven d’un -el que té els costats desiguals-, el quart és l’únic que es composa del triangle isòsceles. Per tant, no és possible que mitjançant la disolució de tots en tots, molts de petits originin a uns pocs de grans i viceversa; però sí ho és en el cas de tres elements, perquè quan es disolen els grans d’aquells que per la seva naturalesa estan constituïts per un tipus de triangle, es composen molts de petits a partir d’ells que adopten les figures corresponents i, a la seva vegada, quan molts de petits es divideixin en triangles, a l’originar-se una quantitat de volum únic, podria donar lloc a una altra forma gran. Cartabón graduado.Aquesta és doncs la nostra teoria sobre la gènesi dels uns en els altres. A continuació hauríem de dir de quina manera es va originar la figura de cadascun dels elements i a partir de la un ió de quants triangles.

Timeu ha planetjat que els dos triangles primordials són els que es corresponen amb el joc de regles que habitualment tenim per casa. El primer dels triangles és el triangle rectangle isòsceles el qual equival a les dues meitats obtingudes al dividir un quadrat per la seva diagonal: el nostre escaire. L’altre, el dels costats desiguals, podem llegir com el quadrat del catet major és igual a tres vegades el quadrat del catet menor. Quin és aquest triangle? Suposem que anomenem bc als catets major i menor, respectivament. Quina serà la seva hipotenusa a? Pel teorema de Pitàgores, a2 = b2 + c2. Però b= 3c2 i, per tant, a2 = 4c2. Finalment, fent arrels quadrades, tenim que a = 2c. Per tant, el nostre triangle rectangle és tal que el catet menor és la meitat de la hipotenusa, és a dir, cadascuna de les dues meitats que s’obtenen al dividir un triangle equilàter pel seu eix de simetria: el nostre cartabò.