Arxiu d'etiquetes: fusió nuclear

Adverteixen que Txernòbil generar noves reaccions nuclears a 35 anys de l’accident nuclear

Científics ucraïnesos van mesurar reaccions de fissió en les masses de combustible d’urani en el tercer reactor tapat per un sarcòfag. Ara, estan estudiant per determinar si desapareixeran per si soles o si requeriran intervencions per evitar un altre accident

Encara que una possible reacció explosiva estaria continguda, podria enderrocar parts inestables de l’antiga estructura. Científics descarten que passi alguna cosa semblant a el desastre nuclear de 1986 que va propagar un núvol tòxica. S’està valorant el desenvolupament d’un robot que pugui suportar la radiació prou com per entrar a la sala 305/2

Segons publica la revista Science, els sensors detecten un nombre creixent de neutrons, senyal de fissió, i procedeix d’una sala que és inaccessible pels seus nivells de radiació. No obstant això, els recomptes de neutrons augmenten lentament, el que concedeix encara diversos anys per trobar una solució que acabi amb l’amenaça.

https://www.infobae.com/america/tendencias-america/2021/05/08/advierten-que-chernobyl-comenzo-generar-nuevas-reacciones-nucleares-a-35-anos-de-su-explosion/

Pasaron 35 años desde que la planta de energía nuclear de Chernobyl en Ucrania explotó en el peor accidente nuclear que tuvo el mundo. Pero, al igual que la memoria, el calor todavía no se apagó.

Es que las reacciones de fisión siguen ardiendo nuevamente en masas de combustible de uranio enterradas en lo profundo de una sala del reactor que explotó. “Es como las brasas en un pozo de barbacoa”, afirmó el científico Neil Hyatt, químico de materiales nucleares de la Universidad de Sheffield. Ahora, los investigadores ucranianos están luchando para determinar si las reacciones desaparecerán por sí solas o si requerirán intervenciones extraordinarias para evitar otro accidente.

Es que los sensores están rastreando un número creciente de neutrones, una señal clara de que está ocurriendo el proceso de fisión, que fluye desde una habitación inaccesible, informó la semana pasada Anatolii Doroshenko del Instituto de Problemas de Seguridad de las Plantas de Energía Nuclear (ISPNPP) en Kiev, Ucrania, durante las discusiones sobre el desmantelamiento del reactor. “Hay muchas incertidumbres. Pero no podemos descartar la posibilidad de un accidente”, afirmó Maxim Saveliev de ISPNPP.

Reacciones de fisión siguen ardiendo nuevamente en masas de combustible de uranio enterradas en lo profundo de una sala del reactor que explotó - REUTERS/Gleb Garanich Reacciones de fisión siguen ardiendo nuevamente en masas de combustible de uranio enterradas en lo profundo de una sala del reactor que explotó – REUTERS/Gleb Garanich

Los recuentos de neutrones están aumentando lentamente, según Saveliev, lo que sugiere que los gerentes aún tienen algunos años para descubrir cómo sofocar la amenaza. Cualquier remedio que se le ocurra a él y sus colegas será de gran interés para Japón, que está lidiando con las secuelas de su propio desastre nuclear hace 10 años en Fukushima, señala Hyatt. “Es una magnitud de peligro similar”.

El espectro de la fisión autosostenida, o criticidad, en las ruinas nucleares ha perseguido durante mucho tiempo a Chernobyl. Cuando parte del núcleo del reactor de la Unidad Cuatro se derritió el 26 de abril de 1986, las varillas de combustible de uranio, su revestimiento de circonio, las varillas de control de grafito y la arena arrojadas al núcleo para tratar de extinguir el fuego se fundieron en lava. Fluyó a las salas del sótano de la sala del reactor y se endureció en formaciones llamadas materiales que contienen combustible (FCM), que están cargados con aproximadamente 170 toneladas de uranio irradiado, el 95% del combustible original.

El sarcófago de hormigón y acero llamado Refugio, erigido un año después del accidente para albergar los restos de la Unidad Cuatro, permitió que el agua de lluvia se filtrara. Debido a que el agua ralentiza o modera los neutrones y, por lo tanto, aumenta sus probabilidades de golpear y dividir núcleos de uranio, las lluvias a veces elevaban el conteo de neutrones. Después de un aguacero en junio de 1990, un “acosador”, un científico de Chernobyl que corre el riesgo de exponerse a la radiación para aventurarse en la sala del reactor dañada, se precipitó y roció una solución de nitrato de gadolinio, que absorbe neutrones, en un FCM que él y sus colegas temían que pudiera ir crítico. Varios años después, la planta instaló rociadores de nitrato de gadolinio en el techo del Refugio. Pero el aerosol no puede penetrar eficazmente en algunas habitaciones del sótano.

Una máscara de gas para chicos es vista cerca del reactor que explotó - REUTERS/Gleb GaranichUna máscara de gas para chicos es vista cerca del reactor que explotó – REUTERS/Gleb Garanich

Los funcionarios de Chernobyl supusieron que cualquier riesgo de criticidad se desvanecería cuando el enorme Nuevo Confinamiento Seguro (NSC) se deslizó sobre el Refugio en noviembre de 2016. La estructura de 1.500 millones de euros estaba destinada a sellar el Refugio para que pudiera estabilizarse y finalmente desmantelarse. El NSC también evita la lluvia y, desde su emplazamiento, los recuentos de neutrones en la mayoría de las áreas del Refugio se han mantenido estables o están disminuyendo. Pero comenzaron a subir en algunos lugares, casi duplicándose en 4 años en la habitación 305/2, que contiene toneladas de FCM enterradas bajo escombros. El modelo ISPNPP sugiere que el secado del combustible de alguna manera hace que los neutrones que rebotan a través de él sean más, en lugar de menos, efectivos para dividir los núcleos de uranio. “Son datos creíbles y plausibles”, dice Hyatt. “Simplemente no está claro cuál podría ser el mecanismo”.

La amenaza no se puede ignorar. A medida que el agua continúa retrocediendo, el temor es que “la reacción de fisión se acelere exponencialmente”, dice Hyatt, lo que lleva a “una liberación incontrolada de energía nuclear”. No hay posibilidad de que se repita lo ocurrido en 1986, cuando la explosión y el incendio enviaron una nube radiactiva sobre Europa. Una reacción de fisión descontrolada en un FCM podría chisporrotear después de que el calor de la fisión hierva del agua restante. Aún así, señala Saveliev, aunque cualquier reacción explosiva sería contenida, podría amenazar con derribar partes inestables del destartalado Refugio, llenando el NSC con polvo radiactivo.

Abordar la amenaza recién desenmascarada es un desafío abrumador. Los niveles de radiación en 305/2 impiden acercarse lo suficiente para instalar sensores. Y rociar nitrato de gadolinio sobre los escombros nucleares no es una opción, ya que está sepultado debajo del concreto. Una idea es desarrollar un robot que pueda resistir la intensa radiación durante el tiempo suficiente para perforar agujeros en los FCM e insertar cilindros de boro, que funcionarían como barras de control y absorberían neutrones. Mientras tanto, ISPNPP tiene la intención de intensificar el monitoreo de otras dos áreas donde los FCM tienen el potencial de volverse críticos.

Casas abandonadas que ardieron al calor del reactor abierto - REUTERS/Gleb GaranichCasas abandonadas que ardieron al calor del reactor abierto – REUTERS/Gleb Garanich

El resurgimiento de las reacciones de fisión no es el único desafío al que se enfrentan los guardianes de Chernobyl. Asediados por radiación intensa y alta humedad, los FCM se están desintegrando, generando aún más polvo radiactivo que complica los planes para desmantelar el Refugio. Al principio, una formación FCM llamada Pie de Elefante era tan difícil que los científicos tuvieron que usar un rifle Kalashnikov para cortar un trozo para su análisis. “Ahora tiene más o menos la consistencia de la arena”, dice Saveliev.

Ucrania ha intentado durante mucho tiempo eliminar los FCM y almacenarlos en un depósito geológico. Para septiembre, con la ayuda del Banco Europeo de Reconstrucción y Desarrollo, pretende tener un plan integral para hacerlo. Pero con la vida aún parpadeando dentro del Refugio, puede ser más difícil que nunca enterrar los inquietos restos del reactor.

https://www.20minutos.es/noticia/4691157/0/detectan-nuevas-reacciones-nucleares-en-chernobil-no-podemos-descartar-la-posibilidad-de-un-accidente/

El “sol artificial” xinès estarà operatiu el 2020. Fusió nuclear

Aprofita l’energia produïda per la fusió nuclear i proporciona una font barata d’energia neta. La fusió nuclear consisteix en una reacció en la qual dos nuclis atòmics (per exemple de deuteri) es converteixen en un nucli més pesant (en l’exemple heli), aquesta reacció va acompanyada de l’emissió de partícules (en l’exemple del deuteri un neutró). Aquestes reaccions poden produir una gran emissió d’energia, en forma de raigs gamma i d’energia cinètica de les partícules emeses.

A diferència de la fissió, que es basa a trencar un àtom molt pesant (d’urani o de plutoni, per exemple) i fer-ne aparèixer de més lleugers (radi entre d’altres), la fusió consisteix a unir àtoms lleugers i convertir-los en un de més pesant.

La producció d’energia mitjançant la fusió nuclear ja fou considerada el 1928, però les primeres experiències serioses no començaren fins el 1950. La fusió nuclear, contràriament a la fissió, no produeix residus radioactius perillosos. Les principals reaccions de fusió són:

Les dues darreres poden ésser considerades una conseqüència de les dues primeres. Hi ha una temperatura llindar que cal superar perquè l’energia obtinguda en la fusió nuclear sigui més gran que la necessària per a produir-la. La necessitat d’emprar temperatures elevadíssimes, de l’ordre de les centenes de milions de graus, ha fet donar a l’energia de fusió el nom d’energia termonuclear. A aquestes elevades temperatures els àtoms són totalment ionitzats i el gas constituït per ells rep el nom de plasma. La fusió, al contrari de la fissió, no es produeix en cadena. De tota manera, si el plasma es manté a una temperatura que superi àmpliament el llindar que dóna un balanç energètic positiu, l’alliberament d’energia termonuclear pot mantenir la fusió de nous nuclis. El control de la fusió és el problema bàsic per a la producció d’energia termonuclear a escala industrial: cal portar el plasma a una temperatura molt elevada i assegurar l’estabilitat del plasma. Per tal d’assolir temperatures tan elevades, cal fornir gran quantitat d’energia (superior als 700 MW) al sistema; d’altra banda, l’estabilitat del plasma s’aconsegueix en confinar-lo ( confinament) mitjançant potents camps magnètics, de forma anul·lar, generats en complexos dispositius, el més emprat dels quals constitueix el tokamak. Hom espera que l’energia produïda per la fusió nuclear abasti les necessitats del futur. Entre les iniciatives destinades a controlar la fusió nuclear amb finalitats energètiques, cal destacar la desenvolupada pel programa europeu Joint European Torus (JET) d’Abingdon (Anglaterra) , en què participa l’Estat espanyol. L’any 1991, al JET, s’aconseguí mantenir la fusió nuclear controlada, amb producció significativa d’energia, durant dos segons, a una temperatura d’entre 200 i 300 milions de graus. Tot i així, tenir centrals nuclears de fusió no sembla possible abans de la dècada del 2030. Des de mitjan anys vuitanta, els esforços més importants en el camp de la fusió nuclear se centren en l’ITER, projecte de gran abast impulsat sobretot per la Unió Europea, en el qual participen també els Estats Units d’Amèrica, el Japó, Rússia, la República de Corea, la Xina i l’Índia. La fusió incontrolada és el principi en què es basa el funcionament d’una bomba nuclear de fusió o bomba d’hidrogen. La font d’energia del Sol i d’altres astres no és més que la fusió nuclear de l’hidrogen.

https://www.elconfidencial.com/tecnologia/ciencia/2019-12-20/sol-artificial-chino-fuente-energia-ilimitada-2020_2385663/?utm_source=facebook&utm_medium=social&utm_campaign=ECDiarioManual Continua la lectura de El “sol artificial” xinès estarà operatiu el 2020. Fusió nuclear

La candidatura del reactor IFMIF-Dones a Granada i les promeses de la fusió nuclear

La reacció de fusió consisteix en la unió de dos isòtops de l’hidrogen, el deuteri i el triti. Aquesta dóna lloc a un nucli d’Heli i alhora emet una gran quantitat d’energia. La idea seria aprofitar-la per escalfar aigua, impulsant així una turbina que generaria electricitat.

La utopia de la fusió ofereix la imatge que és possible una solució a l’esgotament dels recursos fòssils i al canvi climàtic sense haver de transformar els actuals patrons de transport, consum, construcció

Un dels arguments clau dels defensors de la fusió nuclear és que no genera residus radioactius. Si bé és cert que els elements derivats de la reacció no contenen càrrega radioactiva, un dels isòtops utilitzats en la mateixa, el triti, sí que és radioactiu, i els materials de revestiment estructural han de ser tractats com residus radioactiu. En el cas d’una hipotètica explotació comercial de la fusió nuclear, un mineral finit com el liti passaria a ser el recurs estratègic, i per tant factor limitant per al seu desenvolupament. A partir d’aquest s’obté el triti, imprescindible en la reacció.

https://www.eldiario.es/ultima-llamada/candidatura-reactor-IFMIF-Dones-Granada-promesas_6_768933116.html

La candidatura de Granada como sede del acelerador de partículas IFMIF-DONES, con el apoyo prácticamente unánime de la comunidad científica, empresarial e institucional, ha puesto de actualidad en el contexto español la apuesta por la fusión nuclear como fuente energética de futuro.

Resulta llamativo observar cómo un proyecto de una envergadura y complejidad tal no ha generado prácticamente debate, oscilando las reacciones entre el apoyo entusiasta y la indiferencia. Algo en cualquier caso comprensible en una provincia como Granada, con una tasa de paro superior al 25 %; cualquier iniciativa que prometa inversiones millonarias y puestos de trabajo será recibida sin cuestionamiento ni análisis. Continua la lectura de La candidatura del reactor IFMIF-Dones a Granada i les promeses de la fusió nuclear