Fotovoltaica: pros i contres. Dues opcions des de l’ecologisme(*1)

Què hem de caminar vers les energies renovables…penso que ningú ho dubta. Què les renovables no són la solució miraculosa que molts pensen, ja no es tant acceptat. I es que les renovables, ho son en quant a les fonts. És a dir: el vent es renovable i l’energia solar també. Però els aparells destinats a captar la força del vent i transformar-la en energia elèctrica (els aerogeneradors), i els destinats a captar la energia del sol (plaques fotovoltaiques, captadors solars tèrmics….), no són renovables. Cal fabricar-los, mantenir-los i reposar-los al final de la seva vida. Molts d’aquests aparells estan fets a partir de minerals escadussers i en tots els casos necessitem dels combustibles fòssils per tal de fabricar-los, mantenir-los i instal·lar-los. A més, els diferents estudis realitzats sobre la fotovoltaica (http://crashoil.blogspot.com.es/2012/04/debate-la-tre-de-la-fotovoltaica.html) i sobre l’eòlica (http://www.crisisenergetica.org/article.php?story=2011083116270061), mostren que no poden proporcionar tota la energia que la humanitat consumeix actualment.

Tot el que dic no es res de nou, ha sortit a les xarxes especialitzades moltes vegades. En aquest article publicat a la web del “Colectivo burbuja” (http://www.colectivoburbuja.org/index.php/juan-carlos-barba/fotovoltaica-pros-y-contras-dos-perspectivas-desde-el-ecologismo/), es presenten dues opcions: la tecno-optimista i la realista. La primera defensada per dos dels membres del “Observatorio Crítico de la Energia”, la segona pel mestre Pedro Prieto (http://jornadasenergiagasteiz.wordpress.com/pedro-prieto/). Que cadascú jutgi en funció de les dades.

Fotovoltaica: pros y contras. Dos perspectivas desde el ecologismo

Recientemente, y a raíz de un artículo publicado por Marta Victoria y Rodrigo Moretón en La Marea, y que con su permiso reproducimos íntegro aquí, Pedro Prieto ha realizado unos interesantísimos comentarios al respecto que incluimos a continuación. Estamos a la espera de la contrarréplica de Marta y Rodrigo.

Marta Victoria y Rodrigo Moretón* // La energía solar fotovoltaica es probablemente la tecnología de generación eléctrica que mayor desarrollo ha experimentado en los últimos años. Sobre ella se ha escrito y se seguirá escribiendo mucho en el futuro y no pretende este artículo analizar todos los aspectos técnicos, económicos, legislativos y sociales que han acompañado (o impedido, en algunos casos) su crecimiento. El objetivo de este artículo es más modesto. Los autores pretendemos poner de manifiesto que la evolución se está produciendo a tal velocidad que resulta imprescindible utilizar datos actualizados cuando hablemos de esta tecnología. Vistas en perspectiva, las mejoras experimentadas por la fotovoltaica en la última década son espectaculares. Proponemos a continuación un breve recorrido visual para que el lector interesado pueda, sin necesidad de preparación previa, ponerse al día en fotovoltaica.

Coste

El precio del panel fotovoltaico ha descendido drásticamente en los últimos cinco años. En la primera figura se muestra cómo hace un par de años que se superó la barrera de “un euro por vatio pico (Wp)”[1] que permite considerar esta tecnología competitiva con otras fuentes de generación eléctrica. El gráfico (¡atención, los ejes son logarítmicos!) muestra cómo, a medida que iba aumentando la producción acumulada[2], el precio del panel disminuía considerablemente. Este tipo de representación suele utilizarse para estimar el ritmo de aprendizaje de una tecnología, que está relacionada con la pendiente de los datos en estos ejes. Por ejemplo, si los puntos estuviesen sobre una horizontal esto significaría que la tecnología no mejora. Sin embargo, lo que nos muestra la gráfica es todo lo contrario, que la tecnología mejora y mucho. Un panel fotovoltaico cuesta hoy apenas un tercio de lo que costaba hace 5 años. Si en 2008 se pagaban más de 2€/Wp, en 2013 el precio se había reducido hasta llegar a 0.6€/Wp. Cabe destacar también cómo la evolución en los últimos cuatro años representados, alcanzando un precio muy inferior al que parecía esperable en función de los datos de años anteriores, indica la enorme influencia de otros factores no relacionados con el aprendizaje tecnológico, entre ellos la incorporación de productores asiáticos.

grafico1Fig. 1. Precio del panel fotovoltaico de panel plano (en euros por vatio pico) en función de la producción acumulada. Fuentes: elaboración propia usando datos de C. Breyer and A. Gerlach., Prog. in Phot.: Res. and App., 21(1):121–136, 2013 Navigant Consulting.

En la actualidad, para instalaciones fotovoltaicas de autoconsumo conectadas a la red con una potencia inferior a 5kWp, el precio en España varía entre 1.6 y 2.0 €/Wp para el sistema instalado llave en mano. Es posible que la cifra que más interese al lector no sea cuánto cuesta la instalación del sistema sino cuánto cuesta la energía de origen fotovoltaico, aunque obviamente ambas magnitudes están relacionadas. El coste actual del panel permite estimar el precio de la energía fotovoltaica en el rango de 126-265 $/MWh para instalaciones domésticas y 60-86 $/MWh para instalaciones en suelo. Estos valores son inferiores a otras fuentes de generación clásicas como centrales nucleares, de carbón o petróleo (nótese además que estas son estimaciones del coste de generación de la electricidad sin ninguna prima y elaboradas por asesorías financieras nada sospechosas de ecologistas como LazardMorgan Stanley o UBS). Estos números también han permitido que, según informa la propia Agencia Internacional de la Energía, la paridad con la red[3]sea haya alcanzado en 2013 en regiones tan variadas como Alemania, España, Italia, Australia o California.

Potencia instalada

El número de instalaciones fotovoltaicas ha dejado de ser testimonial. A finales de 2013 había instalados más de 138 GW fotovoltaicos en todo el mundo, lo que es equivalente (en potencia) a unos 138 reactores nucleares. De estos, 4 GW están instalados en España, 18 en Italia y 36 en Alemania.

gráfico2Fig. 2. Evolución de la potencia fotovoltaica instalada en todo el mundo. Fuente: IEA.

Cobertura de la demanda

Como consecuencia evidente de la capacidad instalada, la fotovoltaica ha empezado a cubrir un porcentaje significativo de la demanda de electricidad en varios países. En 2013, la energía solar fotovoltaica cubrió el 7,5% de la demanda eléctrica de Italia y Grecia, el 6,7% de la demanda en Alemania y el 3% de la demanda en España.

gráfico3Fig. 3. Porcentaje de cobertura de la demanda mediante fotovoltaica en 2013. Fuente: IEA.

Fabricación de los paneles

El origen de los paneles y células fotovoltaicas se ha desplazado a Asia en la última década,expulsando a los fabricantes europeos y estadounidenses. En 2013, el 76% de los paneles fotovoltaicos se fabricó en un país asiático.

gráfico4Fig. 4. Producción de módulos fotovoltaicos por región. Fuente: Navigant consulting, ISE Photovoltaic Report 2014

Eficiencia

La fotovoltaica es un campo sobre el que se sigue investigando y avanzando. El Laboratorio Nacional de Energías Renovables (NREL en sus siglas en inglés) de Estados Unidos mantiene actualizado el siguiente gráfico que recoge la evolución de los records de eficiencia de célula para las diferentes tecnologías. La eficiencia de una tecnología consolidada como es el silícico cristalino (en azul) o las células de lámina delgada (en verde) se han mantenido relativamente estables desde 1995. Lo que ha mejorado sustancialmente es la fabricación de las células, con esa eficiencia, de manera industrial y a un menor coste.

La figura también muestra la existencia de dos tecnologías alternativas que exhiben una pendiente mayor, es decir, están mejorando su eficiencia a un ritmo mayor en los últimos años. En la parte alta del gráfico aparecen (en violeta) las células multiunión cuyo objetivo es alcanzar la mayor eficiencia posible que pueda compensar el mayor coste de producirlas. En la parte baja emergen (en rojo) los diseños novedosos de células que se basan en obtener menores eficiencias pero con un coste menor.

gráfico5Fig. 5. Evolución de la eficiencia de las diferentes tecnologías de células fotovoltaicas. Fuente:NREL.

Área que utiliza

Por último, las últimas figuras muestran la superficie que sería necesario cubrir con paneles fotovoltaicos para satisfacer la demanda de energía eléctrica en España. En primer lugar, la figura 6 muestra la superficie necesaria asumiendo instalaciones en suelo para generar la demanda eléctrica total. Por supuesto, toda la electricidad no puede ser generada exclusivamente con esta tecnología, pero la figura nos da una idea de qué superficie se requeriría. Para contextualizar este dato, se muestra también la superficie cubierta por carreteras en España actualmente. En segundo lugar, la figura 7 muestra esquemáticamente la fracción de superficie de tejado que, cubierto con paneles fotovoltaicos, generaría el 100% de la demanda eléctrica doméstica española. Como puede apreciarse, ni siquiera sería necesario cubrir todos los tejados de edificios de viviendas para satisfacer esta demanda, apenas cubriendo el 43% sería suficiente.

grafico6Fig.6. Superficie que sería necesario cubrir con paneles fotovoltaicos para generar la demanda eléctrica española. Fuente: elaboración propia a partir del mapa de Wikimedia Commons.

grafico7Fig.7. Fracción de la superficie de tejado que sería necesario cubrir con paneles fotovoltaicos para satisfacer en su totalidad la demanda eléctrica doméstica española. Fuente: elaboración propia

A la vista de los datos anteriores, no queda duda de que el futuro es fotovoltaico. Aunque a algunos esto les dé mucho miedo. Se puede afirmar con bastante seguridad que en la próxima década un porcentaje significativo de energía fotovoltaica cubrirá la demanda eléctrica en los países desarrollados. La tecnología ya está lista. En España, las decisiones políticas determinarán cuándo ocurrirá esto y, lo más importante, cómo, si de forma distribuida, integrada en edificios y siendo propiedad de los consumidores o en manos de las grandes multinacionales eléctricas.

*Marta Victoria y Rodrigo Moretón son miembros del Observatorio Crítico de la Energía. Además, colaboran con el Círculo de Economía, Energía y Ecología de Podemos.

——–

[1] La potencia en vatios pico de un panel es la que produce bajo una irradiancia de 1000W/m2cuando las células están a 25ºC.

[2] La producción acumulada se refiere al total de paneles fotovoltaicos producidos en todo el mundo.

[3] La paridad con la red se define como el momento en el que la tecnología fotovoltaica puede producir electricidad a un precio igual o inferior al precio generalista de compra de electricidad directamente de la red.

Comentarios de Pedro Prieto:
Permítaseme algún comentario, que espero resulte constructivo, sobre este artículo de Marta Victoria y Rodrigo Moretón.

1. Es tendencia general relacionar el avance tecnológico de los módulos fotovoltaicos al precio de mercado en euros o dólares por vatio-pico. A mi juicio, esto es un error, que confunde la economía con la física y la ciencia. En el gráfico de la figura 1, hablan de la evolución en precio de los módulos desde 1980 a 2013. Si utilizamos la escala logarítmica, resulta impresionante: de unos 20 €/Wp a los 0,5€/Wp actuales.
Sin embargo, la eficiencia de las células promedio ha pasado de un 10% de aquella época a un 16% en la actualidad. Y me refiero, no a los supuestos logros de laboratorio, sino a la base instalada promedio, que es la que se refleja en el eje de abcisas, también logarítmico. Esta costumbre de hacer creer a la gente que los progresos exponenciales pueden seguir su marcha hasta dejar los costes económicos en valores mínimos que hagan viable “económicamente” cualquier instalación (el llamado grid parity o paridad de red), supone una forma distorsionada de presentar la realidad. Los ecologistas deberían huir de copiar a los productivistas en este tipo de creencias en el más allá del beneficio o la ventaja o la ganancia exponencial.
Muchas de estas creencias se hallan fuertemente arraigadas en la generación actual, que se ha desarrollado en paralelo con los fulgurantes avances de las Tecnologías de la Información y las Comunicaciones (TIC), que sacan a relucir a cada dos por tres la llamada Ley de Moore, como algo que hace al ser humano y a su ingenio (ingenuity en inglés) capaz de resolver cualquier problema y de saltar cualquier barrera. La ley de Moore se enunció en los años 60 del siglo pasado y venía a decir que, aproximadamente, cada dos años se duplica el número de transistores en un circuito integrado.
Esto venía a implicar, de manera a su vez aproximada, que la velocidad de proceso de la electrónica y la capacidad de almacenamiento de información en bits en los dispositivos seguían una evolución similar.
Moore corrigió el tiro hacia finales de los setenta y dijo que esa duplicación se daría cada dos años, no cada año. Las TIC han venido hasta ahora cumpliendo con esa ley, aunque ya dan síntomas de fatiga y evidentemente, van a tocar el techo a no mucho tardar.
Este avance ciertamente espectacular de las TIC, en velocidades de procesamiento y capacidad de almacenamiento de datos (bits, en realidad, ceros y unos virtuales) con crecimientos exponenciales, ha hecho pensar a muchos, incluyendo a ecologistas, que lo que es posible con los bits, también puede hacerse a igual velocidad con las baterías o con los cultivos de hortalizas o con el transporte por carretera, por barco o por avión de materia tangible. Y sobre todo, en mejoras de la eficiencia de máquinas y demás, ignorando ciertamente los límites de las leyes físicas y en especial las de la termodinámica.
En este sentido, resulta curioso ver cómo se sigue pensando o se induce a pensar que los costes de la producción de módulos FV sólo tienen el destino de seguir bajando…porque es lo que han hecho hasta ahora y es más, probablemente a velocidades igualmente fulgurantes. Ni una sola sospecha de que la saturación de los mercados con fábricas produciendo a espuertas, puede haber influido algo en la caída de los precios. Ni una sola sospecha de que quizá un uso masivo y generalizado de módulos FV llevaría o podría llevar al encarecimiento exponencial (si, también exponencial, pero en sentido inverso, hacia arriba) de los costes de ciertos elementos que son imprescindibles para los módulos y que se hallan en tierras raras o que el precio del cobre, del aluminio, o del vidrio templado puedan subir, dada su limitación o su coste energético. Un estudio serio que pretenda abordar el reemplazo de las energías fósiles (y nucleares) como productoras de electricidad, por energías renovables o aborda estas cuestiones con seriedad, o queda seriamente dañada en credibilidad.

2. Tampoco explica el artículo la paradoja de que justo cuando se reclama que ya estamos en la “paridad de red” en varios países con la fotovoltaica respecto de otras formas de producción de energía eléctrica (p.e. Alemania, España o Italia), estos hayan o bien parado completamente sus instalaciones, o bien caído de forma espectacular en los incrementos de potencia instalada, cuando apenas tiene o han alcanzando entre un 3 y un 6-7% de sus consumos eléctricos respectivos. No resulta aceptable, que el único argumento y además aburridamente recurrente, ante esta parada casi en seco de nuevas instalaciones, sea que los gobiernos son perversos de repente y que han decidido aliarse con los grandes de la energía fósil para hacer la puñeta a los pobrecitos fotovoltaicos. Háganselo ver.

3. Sobre la fabricación de los paneles, apenas hay una vaga referencia al brutal desplazamiento de los centros fabriles desde Europa y EE. UU. hacia Asia, pero sobre todo no a cualquier país de Asia, sino a los países que utilizan maquilas con trabajos semiesclavos y técnicas de extracción de tierras raras y utilización de lixiviados y demás, muy poco respetuosas con el medio, por no decir desastrosas. Ni una palabra sobre este desaguisado. Pasar sobre esto de puntillas es dejarse muchas plumas por el camino. No es serio. Este cambio telúrico exige estudios más serios sobre costes reales e impactos de tecnologías supuestamente verdes. Pero lo grave es que incluso China, que ante los dos años anteriores de desplome de Europa en potencia instalada, se dedicó a llenar sus fábricas con pedidos internos para instalar la potencia que no se instalaba en lo que pensaron serían sus mercados más prometedores y generadores de divisas, y lo hicieron, muy probablemente más para evitar su quiebra, que por una convicción ecológica. China está empezando a dar también signos de fatiga en este capítulo.

4. La eficiencia. Recurrir al mapa del desarrollo de las eficiencias de las diferentes tecnologías y marcas que va actualizando el National Renewable Energy Laboratory (NREL) estadounidense, es otro de los socorridos argumentos que enlaza con los sueños del crecimiento infinito tratados en el punto 1 anterior. Según esto, estaríamos ya en el 44,7% de eficiencia de conversión de energía solar a energía eléctrica directa. Esto es una simple falacia que no explica nada serio. Lo que interesa no es saber lo que puede hacer un diamante de muchos quilates para una determinada función, sino si esa función puede replicarse de forma masiva o los costes (energéticos y físicos, no sólo monetarios) son viables o no va a dejar de ser apenas un curioso ratón fluorescente de laboratorio sin aplicación real alguna. La realidad es que los campos de los ciento y pico gigavatios de instalaciones FV en el mundo tienen eficiencias reales del 15% aproximadamente, no del 44,7%, porque esas células cuestan decenas de miles de euros el metro cuadrado y están a años luz de la llamada “grid parity”, si es que alguna vez esa luz a años de distancia llega a tocar sus paneles.

5. La utilización de la superficie. Otra de las grandes muletillas de los apologistas de la energía solar FV.
Resulta algo patético mostrar que apenas se necesitaría ocupar un cuadrado de 53*53 Km (2.809 Km2) o el 0,6% del territorio nacional para satisfacer la demanda eléctrica nacional y para salir bien en la foto, decir que ya hemos asfaltado con carreteras y autovías el equivalente a 7.396 Km2, (el 1,5% de nuestra superficie nacional) para dar la sensación de que es poco.
Eso es una burrada, señores. Y además, a los quince o veinte años de haberlos instalado (no se crean eso de que TODOS duran 30 años) van a tener que tirar la mayoría de ellos y volver a instalar nuevos paneles. ¿O que se han creído que serían para siempre?
Lo peor es que aquí no se analiza la superficie que habría que ocupar con energías llamadas renovables (en realidad sistemas no renovables capaces de captar parte de los flujos energéticos renovables de la naturaleza), si en vez de tener el 100% de la energía eléctrica de este origen, tuviésemos que ponernos serios y aspirar a reemplazar el total del consumo de energía primaria, que a grandes rasgos sería unas tres veces más.
Para insistir en este asunto y convencer al personal que no sería necesario ocupar terrenos adicionales a los ya ocupados por el ser humano, se habla de utilizar los tejados de las construcciones humanas del país, y se concluye con una facilidad pasmosa, sin más datos, que con apenas el 40% de los tejados sería suficiente para generar toda la energía eléctrica que consumimos ahora. Pero se hace sin mencionar si esos tejados ya existentes están bien orientados (la inmensa mayoría de ellos no lo están) o si tienen sombras o si se las dan unos a otros o si están en provincias muy poco insoladas y sin mencionar la eficiencia de conversión promedio de los módulos FV.
También se callan los costes de asegurar la continuidad del suministro cunado no hay sol, mediante técnicas de almacenamiento de energía eléctrica de forma masiva, algo que hasta ahora se ha probado fuera del alcance de lo razonable y seguramente, porque empuja a la famosa “grid parity” como la zanahoria que persigue el burro sin jamás alcanzarla, porque va sujeta a un palo que sostiene el dueño que va en el carro detrás.
Sinceramente, esperaba algo más serio y profundo de estos responsables del Observatorio Crítico de la Energía, que además, colaboran con el Círculo de Economía, Energía y Ecología de Podemos.