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Chapter 3 
KINEMATICS 

 
GOALS 
When you have mastered the content of this chapter, you will be able to achieve the 
following goals:  
  
Definitions 
Use the following terms to describe the physical state of a system:  

displacement 
velocity  
uniform circular motion 
acceleration  

uniformly accelerated motion  
radial acceleration  
projectile motion  
tangential acceleration  

 
Equations of Motion 
Write the equations of motion for objects with constant velocity and for objects with 
constant acceleration.  
 
Motion Problems 
Solve problems involving freely falling and other uniformly accelerated bodies, 
projectile motion, and uniform circular motion.  
 
Acceleration Effects 
List the effects of acceleration on the human body.  
 
 
PREREQUISITES 
Before beginning this chapter you should have achieved the goals of Chapter 1, Human 
Senses, and Chapter 2, Unifying Approaches. You must also be able to use the 
properties of right triangles to solve problems.  
 
Mathematics Self-Check 
If you can solve the following problem easily and correctly, you are prepared for this 
chapter:  
A surveyor wishes to determine the distance between two points A and B, but he cannot 
make a direct measurement because a river intervenes. He steps off a line AC at a 90o; 
angle to AB and 264 meters long. With his transit, at point C he measures the angle 
between line AB and the line formed by C and B. Angle BCA is measured to be 62o. 
What is the distance from A to B?     [497 m]  
 
 If you had difficulty getting this answer, you will find additional information in 
Section A.6, Right Triangles, of the Appendix.  
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Chapter 3 
KINEMATICS 

 
3.1 Introduction 
For the greater part of your life, you have been engaged in the process of getting from 
here to there. First you learned to crawl, then to walk, and later to run. These are 
examples of motion and change of position. In these motions you were concerned with 
distances, directions, rates of motion, and time, or duration, of motion. This same 
concern with motion is true for change of position by a mechanical device such as a 
bicycle, an automobile, or an airplane. How would you describe your present state of 
motion?  
 How would you describe the motion of an Olympic sprinter? What would be your 
description of a professional figure skater's motion when she does a spin on ice skates? 
Have you seen pictures of an astronaut moving about in the "zero gravity" environment 
of space? What concepts do you need to describe the astronaut's motion? You will be 
introduced to the concepts of motion in various forms in this chapter. This study of 
motion (without concern for its causes) is known as kinematics. 
 
3.2 Characteristics of Distance and Displacement 
In order to develop the relationships and characteristics of motion, it is necessary for us 
to define some terms. If a body is moved from one place to another, it is said to be 
displaced. This displacement is specified by both magnitude and direction. If you move 
your coffee cup along the table top 10.0 cm to the east and then 10.0 cm to the north, 
you will have displaced your cup 14.1 cm to the northeast. The coffee cup will have 
traveled a distance of 20.0 cm and will be a distance of 14.1 cm from its starting point. 
You will notice that distance has only magnitude. Such a physical quantity is called a 
scalar quantity. A scalar quantity is completely specified by a number and its proper 
dimensional unit. Can you think of other scalar quantities with which you are familiar?  
A quantity such as displacement, that is only completely 
determined when you have given both its magnitude and 
its direction is called a vector. A vector quantity can be 
represented graphically by an arrow in which the shaft of 
the arrow represents the line of action and the arrow head 
is the direction of action along the line. Vector A will be 
shown in boldface type A. The length of the line gives the 
magnitude of the vector and is represented in the usual 
type style A. Thus a displacement of 8 km northeast is 
represented by a vector making an angle of 45o with the 
easterly direction and 8 units long (see Figure 3.1).  
 
 Suppose you ride a bicycle from your home to the physics building, a straight line 
distance of 2 km. The total distance you traveled was 2 km. After you ride back home, 
you will have traveled a distance of 4 km, but your net displacement is zero (Figure 3.2). 
The addition of distances (scalars) follows the usual rule of addition. The addition of 
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displacements (vectors) must take into account the directions of the displacements 
involved. In this example the first displacement (from your home to the physics 
building) and the second displacement (from the physics building to your home) are in 
opposite directions. The addition of these two vector displacements gives a zero net 
displacement.  

 
 Vectors do not obey the simple algebraic properties of scalars. For example, when 
you add the two scalars, 2 plus 2, you obtain 4. If you add two vectors, both of 
magnitude three, you may obtain any number from 0 to 6 for the magnitude of the sum 
of these two vectors (see Figure 3.3). Add the two displacements 3 km east and 3 km 
east. What is the net displacement result? If you said 6 km east, you got it. Now add the 
two displacements, 3 km east and 3 km west. What is the net displacement? If you said 
0 km, you are right. How can you add two displacements, each of which has a 
magnitude of 3 km, and obtain a final displacement whose magnitude is 3 km?  

 
 
3.3 Graphical Method for Adding Vectors 
Suppose you dropped a contact lens from your eye and it rolled across the tile floor. It 
rolled 10.0 m across the floor in a direction 37o north of east. There it struck the wall and 
bounced 8.0 m in a direction 30 o west of north. What is the displacement of the contact 
lens? To use the graphical method for adding vectors, we represent the first 
displacement by an arrow pointing 37 o north of east and scaled to represent 10.0 m in 
length, as we have drawn vector A in Figure 3.4a. We represent the rebound 
displacement by the vector B. To add the vectors A and B, we draw the vector B 
extending from the tip of vector A as shown in Figure 3.4c.  
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 The sum of vector A and vector B is called the resultant and is 
shown by the vector R. The magnitude of the resultant 
displacement R can be measured with a ruler, and the angle 
between R and east can be measured with a protractor. For this 
example R, the final location of the dropped lens, is found to be 
given by a vector 13.7 m at an angle 73 o north of east. Now 
suppose we wish to add vector C to vectors A and B given above. 
Vector C has a magnitude of 6.0 m and points to the west. We 
draw vectors A and B as above and then from the tip of B draw 
vector C as shown in Figure 3.5. We can find the resultant R, or 
the vector sum, of A + B and C by drawing a vector from initial 
point of A to the tip of C. We can obtain the magnitude of R by 
scaling, that is, by measuring the length and the direction of R by 
measuring the angle from the east-west reference axis with a 
protractor. Then we have all the data needed to define the vector 
R, direction and magnitude. For this example the vector R is given 
by a displacement of 13.1 m in a direction 81o north of west. This 
procedure can be used for addition of any number of vectors. 

 
 
 
 
 

 
 

 

 You can find the difference between two vectors by using the same procedure. To 
find the value of the vector (A - B), you add the vector -B to the vector A. The vector -B 
has the same magnitude as the vector B but the opposite direction. The vector (A - B is 
shown in Figure 3.6. The method for the finding of the magnitude of the vector R and 
its direction is as given above. For this case the vector R is given by a vector about 
7&xf8; south of east with a magnitude of 12.0 m. In Section 3.2 we asked how you might 
add two displacements, each of 3 km magnitude and obtain a final displacement of 3 
km. From this graphical method of adding vectors, you see that the resultant R and the 
two vectors A and B form a triangle. If the three vectors A, B, R each have a length 3, 
then the vectors, A, B and R must form an equilateral triangle. Hence vector R makes an 
angle of 60 o with vector A (see Figure 3.3c).  
 
3.4 An Algebraic Method for Adding Vectors 
Another way of designating the displacement of the contact lens dropped in the 
previous section is to specify the number of the floor tile on which it is lying from a 
designated corner of the room. This method of locating a point in a plane with two 
coordinates is the visual technique incorporated in the cartesian model of space.  
 By analogy, the cartesian model enables us to state the position vector of the final 
displacement of the contact lens (from the designated corner) as the sum of a north 
component vector and an east component vector. In our example the lengths of these 
component vectors would have units of tile length. In general, the vector in a plane can 
be specified by its horizontal x and vertical y components in any chosen coordinate 
system. For instance, vector A given in Figure 3.5 has an east- west component of Acos 
37 o and a north-south component of Asin 37o. Let us make the substitution of the x-axis 
for the east-west direction and the y-axis for the north- south direction and proceed to 
find the resultant of A, B, and C in Figure 3.5. First we find the x component and the y 
component of each vector A, B, and C. The x component of the resultant R is equal to 
the algebraic sum of the x components of A, B, C, and the y component of R is equal to 
the algebraic sum of the y components of A, B, and C. The method is outlined in Table 
3.1:  



  Physics Including Human Applications 

Chapter 3 Kinematics 

46 

 
 
The magnitude of R is found by using the pythagorean theorem,  
 
  R = √[(2.00)2 + (12.9)2]  

R = 13.1 m  
We can find the direction of R by using the definition of the tangent of an angle, 

tanΘ = RsinΘ/RcosΘ= 12.9/-2.00 = -6.46  
Θ= 98.2o  

In this case, the resultant vector R, which is the sum of A, B, and C is given by a vector 
of length 13.1 m in a direction 98.8 o counterclockwise from the x-axis.  
 
3.5 Characteristics of Motion 
In the above examples please notice that the displacement and the distance traveled 
may be given by different numerical values. In understanding problems of motion it is 
very important to have clearly in mind what information you have been given: Is it a 
distance or a displacement? What you are seeking: Is the answer to be a scalar or a 
vector?  
 In many cases we are interested not only in whether a body has moved but also 
in how fast the body moved. If we measure how much time is required to move an 
object a given distance or through a given displacement, we can calculate the rate of 
change of distance with time or the time rate of change of displacement. Speed is defined 
as the time rate of change of the distance traveled. Since both distance traveled and time 
are scalars, speed is a scalar quantity with the dimensions of length divided by time, or, 
for our purposes, with units of meters divided by seconds. Velocity is defined as the 
time rate of the change in displacement. The average velocity shown by the symbol vave 
 is found as follows:  
     vave=(s1-s0)/(t1-t0)=Δs/Δt      (3.1)  
where s0 is the displacement of the body at time t0 and s1 is the displacement of the body 
at a later time  . We have used Δs to represent the change in displacement that occurred 
in the time of Δt.  
 Since velocity is the ratio of the change in displacement (a vector) to the change in 
time (a scalar), velocity is a vector quantity. What are the dimensions of velocity, and 
what units does it have? You may notice that velocity is the ratio of a quantity 
measured in meters (displacement) to a quantity measured in seconds. Instantaneous  
velocity is velocity at any given instant in time and is discussed in the Section 3.11. Can 
you change the velocity of a moving object without changing its speed? If you change 
only the direction of the velocity of an object and not its magnitude, then the speed, the 
magnitude of velocity, does not change. If you are walking along the sidewalk with a 
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velocity of 3 km/hr east, and turn a corner to go 3 km/hr north, what is your speed? 
Your speed remains the same 3 km/hr, but your velocity has changed from 3 km/hr 
east to 3 km/hr north.  
 The simplest motion that we can have is that of constant velocity. That means 
neither the direction nor the magnitude of the time rate of change of the displacement is 
changing. This is motion in a straight line at a constant rate. One example is walking at 
a rate of 5 km/hr east. The displacement that occurs when a body is moving with 
constant velocity is computed from the equation  
      s = vave t       (3.2)  
 Another simple kind of motion is to travel at a constant speed. The direction of 
displacement may change, but the time rate at which the distance traveled changes is 
constant. An example of such motion is traveling along the highway at 89 km/hr (55 
mph). In this kind of motion the distance traveled is given by the product of the speed 
and the time of travel.  
 You recognize the difficulty in always traveling with either constant velocity or 
constant speed: It does not permit you to stop moving if you are moving already or to 
start moving if you are presently at rest. Clearly, then we need to consider other kinds 
of motion in which the velocity changes.  
 

3.6 Linear Motion 
To begin let us simplify our discussion of motion with changing velocity by restricting 
it to motion of objects along a line. This includes a number of common experiences such 
as a runner on a track, an automobile on the highway, or a toy car rolling down an 
inclined table. In these cases, the object is moving either forward or backward, either 
away from or toward the starting point. Hence, velocity can have only two directions 
which we can designate as positive and negative. In these common situations, you 
notice that the difference between velocity and speed appears to be of minor 
importance; only the sign may be different. So you can understand why in ordinary 
conversation the distinction between velocity and speed is not carefully preserved. 
However, the sign in front of the magnitude of the velocity is highly significant. It tells 
you whether an object is going forward or backward, up or down, right or left, 
depending upon the direction that you have chosen as positive.  
 When a body starts moving from rest, its velocity changes. If we choose forward as 
the positive direction, as you back your car out of the garage you decrease the velocity 
of your auto, that is, you start from rest (v = 0), and give it a negative (backward) speed. 
As you start your car forward down the street, you increase the velocity of your car. The 
change of the velocity of an object in a unit of time is called the acceleration. The average 
acceleration is given by the equation  
     aave= (v1-v0)/(t1-t0) = Δv/Δt      (3.3)  
where v0 is the velocity at t0 and v1 is the velocity at a later time t1, and where Δv 
represents the change in velocity during the time interval Δt. Since velocity is a vector, 
the acceleration is also a vector quantity. What are the dimensions of acceleration, and 
what units does it have? You may notice that acceleration is given by the ratio of a 
quantity measured in meters divided by seconds to a quantity measured in seconds. 
Instantaneous acceleration is the acceleration at any given instant in time and is treated 
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in the Section 3.11 of this chapter. 
 
Questions
Figure 3.7 shows a plot of velocity as a function of 
time for constant acceleration. Study the curve and 
answer the following questions:  
1. What does the intercept C on the velocity axis 
represent?  
2. What does the slope of CE represent?  
3. What does DE represent?  
4. What does tE represent?  
5. Note that the area of OtDEC is made up of a 
rectangle OtDC and triangle CDE. What is the area of 
OtDC, and what does it represent?  
6. What is the area of CDE, and what does it represent?  
7. What is the total area OtDEC, and what does it 
represent?  

 

 
Answers  
1. original velocity, v0  
2. acceleration, a  
3. change in velocity, Δv  
4. velocity at time t, vt 

5. displacement for constant velocity v0 and time t 
6. displacement in time t resulting from the change in 

velocity  
7. total displacement in time t 

 
3.7 Uniformly Accelerated Motion 
Let us develop the relationships for motion in which the time rate of change of the 
velocity, the acceleration, is constant. This is, of course, an idealization since in no real 
system is it possible to keep the rate of change of the velocity a constant for all times. 
But the motion of many systems approximates this idealization. For example, you pull 
away from the curb in your automobile, and after one second you are traveling at a 
forward speed of 10 km/hr (6 mph). Then after two seconds you are traveling at +20 
km/hr (12 mph), after three seconds at +30 km/hr (19 mph), and so on. The rate at 
which you are changing your velocity is a constant. That is, the acceleration is constant 
and has the value of (30 km/hr - 0 km/hr)/(3 sec), or +10 km/hr per second. This is 
known as uniformly accelerated motion. From our definition of acceleration we get 

a = Δv/Δt = (vf - v0)/t     (3.3) 
or solving for vf gives  

vf = v0+ at       (3.4)  
in which vf is the velocity at any time t, if the original velocity is v0 and the acceleration a 
is constant. If the acceleration is constant, the average velocity vave is given by one-half of 
the sum of the final and initial values of velocity,  

vave = (vf+v0)/2      (3.5)  
For the specific example above the average velocity is to be (30 km/hr + 0 km/hr)/2 = 
+15 km/hr. The change in displacement during time t is given by the product of the 
average velocity times the time,  
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Δs = s - s0= vave t = (vf+v0)/2)t     (3.6)  
For the automobile pulling away from the curb above, the displacement, or forward 
distance traveled, is 15 km/hr • 3 sec. Converting kilometers to meters and hours to 
seconds, we obtain (15,000 m/hr)(1 hr/3600 sec) (3 sec) = +12.5 meters. Substituting the 
value of vf from Equation 3.4 in Equation 3.6, we obtain an expression for the 
displacement in terms of the initial displacement, initial velocity, acceleration, and time: 

s - s0 = v0t + at2/2      (3.7)  
Using the example of the automobile, we choose the original displacement at the curb 
as the position where s0 = 0. The starting velocity v0 is zero since the auto starts from 
rest. Since we found the acceleration to be given by 10 km/hr/sec, after 3 sec the 
displacement is given by  

s - 0 = 0(3) + 1/2 (10 km/hr-sec)(3 sec)2  
= +45 km-sec/hr = 45,000 m/3600  
= +12.5 m  

Another equation for uniformly accelerated motion is obtained by eliminating time from 
Equations 3.4 and 3.7 to obtain an expression for the velocity as a function of 
acceleration and distance.  

2a (s - s0) = vf
2 – vo

2       (3.8)  
This product of two vectors is known as a scalar product since it yields a scalar 
quantity. It will be discussed in Section 5.2. In this section, since all the vectors are along 
the same line, this product can be treated as the usual algebraic multiplication. If you 
consider the initial position as the origin, or zero displacement, then the three basic 
equations of uniformly accelerated motion become:vf = vo + at  

s = vot + at2/2 
2a • s = vf

2 – vo
2       (3.9)  

Starting from rest is a special case in which the initial velocity is zero, vo = 0. If the initial 
displacement is also zero, the equations can be reduced to the following shortened 
forms: vf = at  

s = at2/2 
2a • s = vf

2       (3.10)  
when the initial velocity is zero and the initial displacement is zero.  
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 Consider a low-friction toy car rolling down a slightly inclined table. Shown below 
in Table 3.2  and Table 3.3  are the experimental data. Compute the missing items in the 
table. Can you determine what type of motion is represented by this physical situation? 
Experimental data for a 53.6 g toy car rolling down an incline are given in Table 3.2. The 
experiment was repeated with a 50 g mass added to the toy car, and the data in Table 
3.3 were obtained.  
Hot wheels toy car of mass 53.6 gm 

 
Hot wheels toy car with 50 gm mass on top to it (total mass = 103.6 gm) 

 
 What can you say about the influence of mass on the motion of the car down the 
incline? Since mass is a measure of the inertia, the tendency to resist changes in motion 
of an object, how do you explain the fact that although the mass of a moving object is 
almost doubled, the data are changed very little?  
 
EXAMPLE 
An automobile starts from rest and acquires a forward velocity of 36 km/hr in 5 sec. 
What is its acceleration, and what is the change in position during this time? Take the 
forward direction as positive.  
     vo = 0  
since the car starts from rest.  
     vf = +36 km/hr = 10 m/sec  
     t= 5 sec  
How do you find the acceleration? (Hints: 1 km = 1000 m; 1 hr = 3600 sec.) From 
Equation 3.3  
     a = Δv/Δt = (vf - v0)/t = 10 - 0/5 = +2 m/sec2   (3.3)  
From Equation 3.10  

s = at2/2 = (2) (5)2/2 = +25 m     (3.10)  
 
Does this example describe a realistic situation? Plot a curve similar to the one in Figure 
3.7 for the sample problem worked above. Then plot the displacement as a function of 
time. What type of curve did you get? Which equation describes the curve?  
 There are many examples of almost uniformly accelerated motion, but perhaps the 
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most familiar example is a body falling freely through the air when the air resistance is 
neglected. For such an idealized falling body the acceleration a is constant and is 
directed vertically downward, that is, follows the direction of a plumb bob line. This 
constant downward acceleration is called the acceleration due to gravity and is designated 
by g. All of the equations developed above for uniformly accelerated motion apply for 
an ideal falling body. One normally replaces a by g, which has a numerical value of 
about 9.80 m/sec2 downward near the surface of the earth. You can get an approximate 
value for the magnitude of g by the following simple experiment. Toss a ball straight 
up, estimate the time the ball is in flight and the height to which the ball is thrown 
above your hand. You may estimate the time by counting "thousand-and-one, 
thousand-and-two ..." Each count is approximately one second. You should be able to 
estimate the height in meters that the ball rises. You then can calculate the value of g by 
dividing twice the height by the square of one-half the time of flight. From Equation 
3.10, we know that  
    h = 1/2g(t/2)2  
Solving this for g,  
    g = 2h/(t/2)2= 8h/t 2  m/sec2      (3.11)  
What value did you get? ____________ m/sec2. In any case you will find your value to 
be nearer 10 m/sec2 than to either 1 or 100 m/sec2. Thus your determined value is the 
proper order of magnitude. 
 
EXAMPLES 

1. A person hangs from a diving board so that his feet are 5 m above the water level in the 
pool. He lets go of the board. Assuming idealized falling motion,how much-time passes 
before his feet strike the water, and what is their velocity at that time? 

Given: If we take downward as the positive direction, then s = +5 meters down from 
the board. At the beginning (t = 0), the person is at rest. This implies v0= 0. Then the 
person begins to fall with an acceleration of g = +9.80 m/ sec2 (positive downward).  

Find:  
a. time of fall = t  
b. velocity = vf 

Relationships:    s = vot + at2/2 
vf = vo + at  

Substituting numerical values,  
5m = 0t + (1/2)(9.80 m/ sec2) t2 
t2= 10/9.80 sec2/m t = 1.01 sec  
vf = 0 (m/sec) x 1.01 sec + 9.80 m/ sec2 • 1.01 sec  
vf = 9.80 m/sec downward  

2. A ball is thrown vertically upward with a velocity of 30 m/sec. Assuming idealized 
motion, how high will it rise, and when will it reach its peak of flight? How long will it 
be before it returns to the starting point, and what will the velocity be at that time 

Given: vo = +30 m/sec (positive upward). At its peak the ball stops; this implies 
that the speed at the peak is zero, vpeak = 0 when tpeak = time to reach the peak. Then the 
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ball starts downward with g = -9.80 m/sec2.  
Find:  

a. time of rise = tpeak = time in flight/2  
b. height = s  
c. final speed = vf 

Relationships:  vf = vo + gt  s = vot + gt2/2  2g • s = vf
2 – vo

2  
Using the first of these and inserting values for the final speed vf, the original speed vo 
and g, we get  

0 = 30.0 m/s - 9.80 m/ sec2  tpeak  
and solve for tpeak. Note that if the original velocity is positive upward, g is then negative 
(downward).  

time to reach the peak = tpeak = 30.0 m/9.80 m/ sec2 = 3.06 sec  
Substitute this value for the time into the equation for the displacement:  

s = vot + gt2/2;  s = 30 m/sec • 3.06 sec - 1/2 (9.8 m/ sec2)(3.06)2  
height = 91.8 m - 45.9 m = +45.9m  

or using the other equation  
2a • s = vf

2 – vo
2       (3.9) 

+2 (-9.80 m/ sec2) s = 02- (30 m/sec) 2  
s = 900 m2/ sec2/19.6 m/ sec2= +45.9 m  

It will take the ball the same time to fall as to rise; so total time of flight = 2(3.06 sec) = 
6.12 sec. Therefore, the final velocity  

vf = 30 m/sec - 9.80 m/ sec2 • 6.12 sec;  vf = -30.0 m/sec  
Note the negative sign. When the ball returns, it will be going down (negative), with the 
same speed with which it started up.  
 

3. A record run in the 200-m dash by Jesse Owens in the 1936 Olympics is well 
approximated by assuming that Owens started from rest and accelerated at the constant 
rate of 6.7 m/ sec2 for a time of 1.6 sec. He then ran the remainder of the race at a 
constant speed. Draw a graph of Owens' acceleration as a function of time. Draw a 
graph of his speed as a function of time. Draw a graph of the distance he has run as a 
function of time.  
[See Figure 3.8  for the solution.]  
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3.8 Projectile Motion 
Your friend throws you a tennis ball, which you catch and return to her. The motion of 
the ball is motion in a vertical plane. It is a common type of motion, but it is more 
complicated than linear motion. It is motion in which the object has an almost constant 
velocity in one direction and has almost uniform acceleration in a direction at right 
angles to the constant velocity (see Figure 3.9). This type of motion is called projectile 
motion.  

 
 The tennis ball, when we neglect the effects of spin and air resistance, is moving 
with a constant velocity in the horizontal direction. (The horizontal components of 
motion are shown in the figure by the subscript h.) It has the acceleration due to gravity 
in the vertical direction.(The vertical components of motion are shown by the subscript 
v.) We shall treat projectile motion as two separate sets of scalar equations using only 
positive and negative signs to indicate directions, up and down in the vertical direction 
or forward and backward in the horizontal direction.  
 Because the motion in the horizontal direction in this idealized case is motion of 
constant velocity, the horizontal displacement of the tennis ball is given by the product 
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of the horizontal velocity and the time.  
      sh = vh t       (3.12) 
where vh is the horizontal velocity and t is the time. This expression neglects both air 
resistance and spin, and so vh is a constant since the acceleration in the horizontal 
direction is zero.  

 
 In the vertical direction, the equations of uniformly accelerated motion Equation 3.9 
hold true. That is, where vv = vertical velocity at time t, vo is the vertical velocity at t = 0, 
and sv is the vertical displacement.  
    vv = vo +gt   [a]       (3.13)  
    sv = vv t +1/2 gt2  [b]  
    vv 2 = vo 

2+ 2gsv  [c]  
Note that if we choose the upward direction as positive, then acceleration due to gravity 
is g= -9.80 m/sec2.  
 Suppose a projectile is fired with a velocity of v at an angle Θ to the ground. The 
horizontal component is constant during flight but the vertical component is changing 
because the acceleration is constant in a downward direction: g = -9.80 m/sec2. The 
horizontal component of velocity is vh = v cos Θ, and the original vertical component of 
velocity is v sin Θ. Hence the vertical component at any time t after firing is  
     vv = v sin Θ +gt      (3.14)  
What is the vertical component of velocity at peak of flight? At the peak of its flight the 
projectile is moving only in a horizontal direction, so the vertical component of its 
velocity is zero. Substituting zero for vv in Equation 3.13a and solving for the time 
required to reach the peak of flight, we get the following algebraic equations:   
   vv = 0 = vo +g tpeak = v sin Θ + gtpeak     (3.15)  
     tpeak = - v sin Θ /g       (3.16)  
The horizontal displacement relative to position of firing x at any time t is given by 
Equation 3.12 where vh is given by v cos Θ and sh is given by x,     
 x = (v cos Θ) t      (3.17) 
and the vertical displacement sv is given by Equation 3.13b where sv= y and vv = v sin Θ. 
With these substitutions, Equation 3.13b becomes 
     y = (v sin Θ)t + gt2/2       (3.18) 
The vertical displacement y = 0 at two times, t = 0 and t = -2 v sin Θ /g. Notice that this 
later result is two times the time required to reach the peak. You can also use Equation 
3.13b to calculate the peak height.  
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 We can show by substituting the value of tpeak given by Equation 3.16 that the peak 
height ypeak is  
    ypeak = - v2 sin2 Θ/g + 1/2 (v sinΘ)2/g = -1/2 v 2 sin2Θ/g   (3.19)  
What is the projectile's range, that is, how far from where it is fired will it strike the 
ground? If y = 0, x = 0, at t = 0, then the range R is found when y is again zero: 

range = horizontal velocity • time of flight 
    R = (v cos Θ) (-2 v sin Θ/g) = - v2 sin 2Θ/g    (3.20) 
In above equations the value of g is -9.80 m/sec2.  

At what angle should the projectile be fired to give maximum range for a given 
firing velocity? The maximum value of the sin 2Θ occurs when 2Θ is 90o . Hence R  is 
greatest when Θ is 45 o. You can obtain the equation for the path of the projectile by 
combining Equations 3.17 and 3.18 and eliminating t. What is the path of a projectile 
under ideal conditions? 

 
EXAMPLE 
Patty Berg, a professional golfer, drives a ball from the tee with a velocity of 37.2 m/sec 
(120 ft/sec) at an angle of 37 o and with no spin. The fairway is straight, and the ball 
strikes the ground in the same horizontal plane as the tee. What is the horizontal 
component of the velocity. How long is the ball in flight? How far down the fairway 
does the ball first strike the ground? What is the angle at which it strikes the fairway? 
(Neglect air resistance.)  
a. The horizontal component of velocity is v cos Θ  

vh = 37.2 cos 37 o = 29.8 m/sec or 96 ft/sec 
b. The original vertical component of velocity = v sin Θ. 

vv = v sin Θ = 37.2 sin 37 o = 37.2 x 0.6 = 22.3 m/sec or 72 ft/sec 
 

At the peak of the flight the vertical component of velocity is 0. In order to find time to 
reach the peak, we use Equation 3.15 and set 0 = v sin Θ + gtpeak. 

tpeak= - v sin Θ /g = -37.2 x 0.6/-9.80 = 22.3/9.80 = 2.28 sec 
Total time of flight is equal to two times the time it takes to reach peak, so 

ttotal = 2 tpeak = 4.56 sec. 
c. range = R = v cos Θ • ttotal = 37.2 x 0.80 x 4.56 = 136 m.  
d. At the point that the ball hits the ground, the horizontal component of velocity is 29.8 
m/sec. We can calculate the vertical component because we know that the ball drops 
for 2.28 sec. 

vv = gt = (-9.8)(2.28) = 22.3 ft/sec downward 
e. Because we now know both the vertical and horizontal components of velocity when 
the ball strikes the ground, we can find the angle Θ at which it hits. 

tan Θ = vv / vh = -22.3/29.8 = -3/4 ; Θ= 37 o below the horizontal. 
Is this what you expected? (Look again at Figure 3.9 and at Figure 3.10.) 
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3.9 Uniform Circular Motion 
Do you remember taking a ride on a merry-go-round? This is an example of circular 
motion. First, consider the ideal situation when the merry-go-round is rotating at a 
constant rate, that is, moving with constant speed. This is known as uniform circular 
motion. Does a body executing this type of motion have an acceleration? Consider the 
velocity at two points A and B on the circle in Figure 3.11. At each point the velocity is 
tangent to the circle at that point. We see that vA and vB are not the same since the vector 
vA and vB do not point in the same direction. Hence there must be an acceleration even 
though the magnitudes of velocity vA and velocity vB are equal.  
 Since the magnitude of the velocity in a direction tangent to the circular path is 
constant, the value of acceleration in the tangential direction must be zero. Hence, if 
there is an acceleration, and if the component of acceleration along the direction of 
motion is zero, the acceleration must be entirely perpendicular to the direction of 
motion. If the motion is circular, the acceleration must always be directed toward the 
center of the circle. This acceleration is called the radial acceleration.  
 Let us turn to Figure 3.11 to derive an expression for the magnitude of the radial 
acceleration. For very small angles the triangles OAB and the velocity triangles in 
Figure 3.11b  are similar triangles. Hence the ratio of the sides is equal, 

Δv/AB = v/r 
in which line segment AB is the length of the arc from A to B and v represents the 
magnitude of vB and vA. But the distance from A to B is given by the velocity times the 
change in time, for small time changes, AB = v • Δt. So,  

Δv/ v Δt = v/r and Δv / Δt = v 2 /r 
But Δv/Δt is equal to the radial acceleration ar. Hence 
      ar = v 2 /r       (3.21) 
In the merry-go-round example, the circular motion in starting and stopping is, of 
course, not uniform.  
 When the circular motion is not uniform, the tangential component of acceleration is 
not zero. In these cases, we have both a tangential component of acceleration at and a 
radial component of acceleration ar. The total acceleration is then the vector sum of the at 
and ar. The tangential acceleration is positive as the merry-go-round starts and negative 
as it stops. 
EXAMPLE 
If you are riding on a merry-go-round at a distance of 6 m from the axis of rotation and 
are making one revolution in 12 sec, what is your radial acceleration? The tangential 
velocity of the merry-go-round is the distance traveled, the circumference, divided by 
the time for one revolution. Thus 

v = 2 π • 6 m • 1/12 sec = π m/sec 
Using Equation 3.21, we can find the radial acceleration. 

ar = v 2 /r = π2 /6 ≈ (10/6) m/sec2 
What is the tangential acceleration if the merry-go-round reaches this rate of rotation in 
6 sec? 
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vt = at t 
 Thus 

π = at t or at = (π/6) m/ sec2 

 

Total acceleration (see Figure 3.12) is the resultant of ar and at : 
ar = (10/6) m/ sec2 and at = (π/6) m/sec2 

tan Θ = {(10/6)/6}/(π/6) = 10/ π 
Θ= 72.6 o 

atotal = √[(π/6)2 + (10/6) 2] = 1/6 √[π2 + (100]  = +1.75 m/sec2  

during start- up 

. 
3.10 Effects of Acceleration 
There are examples of acceleration and deceleration within the human body itself. One 
example has to do with the passage of food through the body. Another is in the blood 
circulation system. Can you list the positions of acceleration and deceleration for each of 
these? Can you think of another human system in which there is acceleration and 
deceleration?  
 A number of different accelerations may act upon the human body. These vary in 
duration, magnitude, rate of onset and decline, and direction. Some acceleration 
exposures may be so mild that they produce no physiological or psychophysiological 
effects. On the other extreme they may be so severe that they produce major 
disturbances such as blackouts. The effects also vary a great deal from individual to 
individual. Undoubtedly, you have observed this in your childhood play and in your 
reactions to various types of rides at amusement parks.  
 The field of acceleration research has produced a number of general principles 
concerning the effects of acceleration on human physiology and performance. For 
additional details and information see the Bioastronautics Data Book, Scientific and 
Technical Information Division, National Aeronautics and Space Administration, from 
which is derived Table 3.4 showing the effects on humans due to sustained acceleration. 
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EXAMPLE 

 

Find the stopping acceleration (average) in units of g for a 
person striking a snow drift at the terminal velocity of 54 
m/sec if 1 m of snow brings the person to rest Figure 3.14. 
From Equation 3.9, 

vf
2 – vo

2 = 2a • s 
Substituting the given values of vf = 0, and vo = 54 m/sec, 
a = -(54 m/sec)2/2 m = -1438.6 m/sec2= 146.8 g There is a 
documented case of a paratrooper free falling without a 
chute and surviving such a fall without major injuries!  

 
ENRICHMENT  
3.11 Instantaneous Velocity and Acceleration 
In Equation 3.1 we defined average velocity vave = Δs/Δt. As the change in time 
approaches zero (Δt → 0), the instantaneous velocity is the limiting value of Δs/Δt and 
is written ds/dt. This is called the derivative of s with respect to t,  

 
Thus if s = f(t), then  

 
Similarly average acceleration is aave= Δv/Δt, and the instantaneous acceleration is 
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EXAMPLES 
1. Suppose a body moves along the x-axis in accord with the relationship  

x = 4 - 3t + 2t2 meters 
Find the instantaneous velocity, instantaneous acceleration, and when the body is at 
rest. 

vinst = dx/dt = -3 + 4t m/sec = vo + at 
 

a. Explain this relationship; that is, what do the -3 and 4 represent? [the initial 
velocity and the instantaneous acceleration]  

b. What does the fact that ainst = 4 m/sec2 indicate about the motion of this body? [It 
is uniformly accelerated motion.]  

c. For a body at rest vinst = 0. When does this occur? [when -3 + 4t = 0 or t = 3/4 sec]  
 

2. Develop the equation of motion of a particle from the following information: An 
object starts from y = 2 m with a velocity of 3 m/sec and a constant acceleration of -
0.5 m/sec2. 

a = dv/dt = -0.5 m/2 
Thus,      ∫ dv = ∫ a dt  
so v= -0.5t + constant. At t = 0, v = +3 m/sec. So the constant is 3 m/sec. What is v at any 
time t? v = -0.5 t + 3 and v= dy/dt, so 

∫ dy = ∫ v dt 
What is the value y at any time t? [y = -(0.5t2)/2 + 3t + constant. y = 2 at t = 0, so the 
constant is 2 m. y = 2 + 3t - 0.25t2. ] 

 
SUMMARY 
Use these questions to evaluate how well you have achieved the goals of this chapter. 
The answers to these questions are given at the end of this summary with the section 
number where you can find the related content material.  
Definitions 
1. The slope of a displacement versus time curve is called _____.  
2. The speed of an object is constant when it undergoes _____.  
3. Uniform circular motion implies that _____is always zero.  
4. If the _____is constant, then uniformly accelerated motion is observed.  
5. The idealized motion of projectiles near the surface of the earth has a constant _____ 
in horizontal direction and a constant ______ in vertical direction.  
6. When a fly wheel on an electric motor starts, it has a positive _____ and its motion is 
not uniform.  
7. An object moving with constant speed around a circle has_____ acceleration.  
Equations of Motion 
From the equations of uniformly accelerated motion (see Section 3.7) you should be able 
to answer the following questions.  
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8. An object whose motion is described as uniformly accelerated always has which of 
the following properties?  

a. the speed is constant  
b. acceleration is proportional to time  
c. displacement is a quadratic function of the time  
d. the velocity vector does not change its direction  

9. The velocity of a uniformly accelerated bicycle  
a. increases linearly with distance  
b. increases linearly with time  
c. increases linearly with acceleration  
d. increases linearly with gravitation  

10. For uniformly accelerated motion which of the following quantities must be zero?  
a. the initial acceleration  
b. the initial velocity  
c. the initial displacement  
d. the time rate of change of the acceleration  
e. the time rate of change of the velocity  
f. the time rate of change of the displacement  

Motion Problems  
From the equations in Section 3.5 you can solve problems about idealized freely falling 
objects.  
11. A parachutist jumped from a helicopter at rest at a height of 78.4 m above the 
ground. His parachute failed to open. Neglecting air resistance, how long did it take 
him to hit the ground, and what was his speed at impact?  

a. 2 sec, 4.9 m/sec  
b. 4 sec, 39.2 m/sec  
c. 6 sec, 58.8 m/sec  
d. 4 sec, 39.2 m/sec  
e. 2 sec, 9.8 m/sec From the equations in Section 3.8 you can solve problems of 

projectile motion.  
12. A swimmer leaps horizontally from the edge of the swimming pool with a velocity 

of 6 m/sec. If he is 2.4 m above the surface of the water when he leaves the edge of 
the pool, assuming idealized motion, how long will it be before he hits the water? 
How far will he be from the edge of the pool?  

a. 0.9 sec, 5.4 m  
b. 0.8 sec, 4.8 m  
c. 0.7 sec, 4.2 m  
d. 0.6 sec, 3.6 m  
e. 0.5 sec, 3.0 m  

From the equations in Section 3.9, you can solve problems on uniform circular motion. 
13. During pre-mission training, the astronauts are placed in the large NASA centrifuge. 

They are swung in a horizontal circle at a constant speed of 10 m/sec on the end of a 
3.4 m long support rod. What is the horizontal acceleration the astronauts must 
endure?  

a. 4.9 m/sec2 or ½ g  
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b. 9.8 m/sec2 or 1 g  
c. 19.6 m/sec2 or 2 g  
d. 29.4 m/sec2 or 3g  
e. 39.2 m/sec2 or 4 g  

Acceleration Effects 
14. From your reading of Section 3.10 describe the acceleration effects on a space shuttle 

transporter occupant  
a. when it takes off with a 3 g acceleration  
b. when it lands with a 2 g braking acceleration  

Answers 
1. velocity (Section 3.6)  
2. uniform circular motion (Section 3.9)  
3. tangential acceleration (Section 3.9)  
4. acceleration (Section 3.7)  
5. velocity, downward acceleration (Section 3.8)  
6. tangential acceleration (Section 3.9)  
7. radial (Section 3.9)  
8. c (Section 3.7)  
9. b, c (Section 3.7)  
10. d (Section 3.7)  
11. d (Section 3.5)  
12. c (Section 3.9)  
13. d (Section 3.10)  
14. a. impossible to raise oneself, vision dims (Section 3.10)  

b. facial congestion  
 

ALGORITHMIC PROBLEMS  
Listed below are the important equations from this chapter. The problems following the 

equations will help you learn to translate words into equations and to solve single 
concept problems.  

Equations 
vave=(s1-s0)/(t1-t0)=Δs/Δt      (3.1) 

      s = vave t       (3.2)  
aave = Δv/Δt = (vf - v0)/t     (3.3) 
vf = v0+ at       (3.4)  
vave = (vf+v0)/2      (3.5)  

 Δs = s - s0= vave t = (vf+v0)/2)t     (3.6)  
s - s0 = v0t + at2/2     (3.7)  
2a • s = vf

2 – vo
2      (3.9) 

       vv = v sin Θ +gt     (3.14)  
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vh = v cos Θ      (definition) 
      x = (v cos Θ) t     (3.17) 

       y = (v sin Θ)t + gt2/2      (3.18) 
      ypeak = -(1/2) v 2 sin2Θ/g     (3.19)  
     R = - v2 sin 2Θ/g      (3.20) 

vt = 2 πrn      (definition)  
 

Problems  
1. Find the average speed of a sprinter who runs 100 m in 9.1 sec.  
2. If a skier reaches a speed of 20 m/sec in 10 sec after starting from rest, find the 

acceleration of the skier.  
3. A ball is dropped from a window 19.6 m above the ground. Assuming idealized 

motion, how long does it take the ball to reach the ground?  
4. An experimental bumper system is designed to bring a car to rest from an initial 

speed of 4.0 m/sec. The stopping distance of the bumper is 0.50 m. Find the negative 
acceleration necessary to make such a stop.  

5. A train is originally moving at a speed of 20.0 m/sec when it is accelerated at 2.00 
m/sec2 for 5.00 sec. Find the distance the train travels during the time of acceleration.  

6. A toy train goes around a circular track (radius 1.00 m) at a constant speed of 1.50 
m/sec. Find the radial acceleration of the train.  

7. The wheel of a moving bicycle is 71.1 cm in diameter and is making 2.00 revolutions 
per second. Assume that the wheel does not slip on the ground. How fast is the 
bicycle traveling?  

8. A student hits a ping-pong ball at the back edge of the table so that the ball leaves the 
paddle with a velocity of 2.0 m/sec at 30o above the horizontal. Assume idealized 
projectile motion. What is the horizontal velocity as the ball leaves the paddle? 
When is the velocity of the ball entirely horizontal?  

9. An object is moving along a straight line such that its 
displacement is as shown below. What is the average velocity 
for each second and the entire 3 seconds? See Table, where x 
is given in meters and t is in seconds  

 
 

10. A golf ball is projected at 45 o to the horizontal with an initial velocity of 40 m/sec. a. 
Find the horizontal and vertical speed of the ball 5.0 sec after it is projected. b. Find 
the horizontal and vertical position of the ball after the first 5.0 sec of flight.  

11. Find the peak height of the golf ball in the flight described in problem 10.  
12. Find the initial velocity of a projectile launched at an angle of 30o, if its peak height is 

25 m.  
13. Compute the tangential velocity and the radial acceleration of an object resting on 

the edge of a long playing phonograph record (r = 15 cm, n = 33 1/3 rpm). 
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Answers 
1. 11 m/sec 2 
2 m/sec2 
3. 2.00 sec  
4. 16 m/sec2 
5. 125 m  
6. 2.25 m/sec2 
7. 447 cm/sec  

8. 1.7 m/sec, .010 sec  
9. -2 m/sec, 2 m/sec, 12 m/sec, 4 m/sec 
10. a. 28 m/sec, -21 m/sec  
 b. 140 m, 19 m  
11. 41 m  
12. 44 m/sec  
13. 52 cm/sec, 180 cm/sec2 

 
EXERCISES 
These exercises are designed to help you apply the ideas of a section to physical 
situations. When appropriate, the numerical answer is given in square brackets at the 
end of each exercise.  
Section 3.2 
1. A body undergoes the following displacements: 6 m in northwest direction, 10 m at 

an angle of 37 o south of west, and 12 m at angle 30o south of east. What is the final 
position of the body relative to the original position? [8.0 m, 260 o]  

2. The weight of a body is a vector quantity, and its direction is vertically downward. If 
a block of marble weighing 500 newtons (N) is resting on a 20o incline, what are the 
components of the weight parallel to the incline and perpendicular to the incline? 
[171 N, 470 N] 
 

Section 3.6 
3. A city bus starts from rest at a bus stop and accelerates at the rate of 4.0 m/sec2 for 10 

sec. It then runs at this constant rate for 30 seconds and decelerates at 8.0 m/sec2  

until it stops. Draw a graph of the displacement versus time. What is the 
displacement of the bus between stops? [1500 m] 

 
Section 3.7 
4. A geology student is trying to determine the depth of a ravine by dropping rocks 

from a cross-walk. He finds by a stopwatch that 2.50 sec is required for a rock 
dropped from the bridge to strike the water. Assuming idealized motion, how deep 
is the ravine? [30.6 m]  

5. The reaction time of an alert automobile driver is 0.700 sec. (The reaction time is the 
interval between stimulus to stop and application of brakes.) After application of the 
brakes an automobile can decelerate at 4.9 m/sec2. If a car is traveling at 48.4 km/hr 
(30 mph), what total distance does it travel after the driver sees a stop signal? How 
far does it travel if the car is traveling with a velocity of 96.8 km/hr (60 mph)? Does 
this seem realistic to you? What difference would it make if the driver had been 
drinking and had a slower reaction time of 1.50 sec? [27.8 m, 92.5 m, 10.8 m farther, 
21.5 m farther]  

6. There are cases in which the human body has withstood very large accelerations 
under proper conditions. The following is based on an actual incident. A female, age 
21, height 1.7 m (5 ft 7 in.), mass 52.3 kg (weight 115 lbs), jumped from a tenth-story 
window and fell 28.4 m (93 ft) into a freshly plowed garden where she came to rest 
with a deceleration distance of 15.3 cm (6 in.). She landed on her right side and back, 
and her head struck the soft earth (see Figure 3.14). The woman survived, sustaining 
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only a fractured rib and right wrist. Apparently there was no loss of consciousness 
or concussion. Assume a freely falling body. What were the velocity of impact and 
the deceleration in g's? [23.6 m/sec, 92.7 g] 

 
Section 3.8 
7. A ping-pong ball rolls with a speed of 0.60 m/sec toward the edge of a table top 

which is 0.80 m above the floor. The ball rolls off the table. Assuming idealized 
motion, how long was it in flight, and how far from the edge of the table did the ball 
hit the floor? [0.40 sec, 0.24 m]  

8. An aviator drops a heavy object from his plane at a height of 490 m while he is 
moving with a constant horizontal velocity of 30 m/sec. How long does it take for 
the object to strikes the ground? Where is the plane when the object strikes the 
ground? Where does the object strike the ground relative to the point directly under 
the plane at the instant the object was dropped? [Neglecting friction, 10 sec, plane 
vertically above object, 300 m]  

9. A baseball leaves the bat of Hank Aaron at a height of 1.22 m (4 ft) above the ground 
at an angle of 37o with such velocity that it would have a range of 122 m at the 
height of 1.22 m. However, at a distance of 106.7 m (350 ft) from homeplate there is a 
9.15 m (30 ft) high fence. Does Aaron get a home run? [yes, ball is higher than 9.15 m 
at 106.7 m]  

10. A punter kicks a football at an angle of 53o above horizontal. It is observed to be in 
the air 4 sec. How high did it go, and how long was the kick? Would you want this 
player for a punter on your football team? [19.6 m, 58.9 m or about 64 yards] 

 
Section 3.9 
11. An aviator is said to be doing a 4g circle. What does this mean? What kind of a circle 

would he be doing if the resultant acceleration at the top of the circle is 0? [v2 /r = 4 
g, 1g = v2 /r ]  

12. At what speed must an automobile round a curve with a radius of curvature of 39.2 
m to have a radial acceleration equal to g? Now suppose the car continues down the 
road at the same speed and goes over the top of a hill with the same radius of 
curvature. What sensation would you experience if you were a passenger in the car? 
[19.6 m/s]  

13. As a result of the earth's rotation, objects at rest on the surface of the earth have a 
radial acceleration. What is this acceleration at the equator? The radius of the earth is 
6.38 x 106 m. What is this acceleration at your latitude? How does this compare with 
g? [aequator = 3.37 x 10-2 m/sec2 = 3.45 x 10-3 g] 

 
PROBLEMS 
Each problem may involve more than one physical concept. A problem that requires 
material from the enrichment section, Section 3.11, is marked by a dagger (†). The 
numerical answer is given at the end of each problem.  
14. A baseball outfielder can throw a baseball a maximum distance of 78.4 m over the 

ground before reaching the height from which it was thrown. Assuming idealized 
motion, with what velocity does he throw it? How long will the ball be in flight? 
How many bases can a runner safely take during this time if he can run the 100-
meter dash in 11 sec? The distance between bases is 27.4 m or 90 ft. [27.7 m/sec, 4.00 
sec, 1 base]  
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15. An open automobile starts from rest with a uniform acceleration at 4.00 m/sec2. A 
premed student stands on the other side of the parking lot, exactly opposite the 
starting point of the car and 20.0 m from it. As it starts, he throws an apple with a 
horizontal velocity of 20.0 m/sec to a classmate in the car. In what direction must he 
throw the apple so his classmate can catch it easily? Assume it passes over the 
shortest possible distance. about 5.75 o to the line between the student and the 
original position of the car]  

16. A small rocket is shot vertically into the air with a speed of 300 m/sec. In addition to 
the acceleration due to gravity there is an average retarding acceleration of 2.20 
m/sec2. How long does it take for the rocket to reach maximum height? What is this 
height? [2.50 sec, 37.5 m]  

17. A helicopter is ascending at a constant rate of 15.0 m/sec. A doctor drops a weighted 
package of bandages from the helicopter at a height of 60.0 m to a nurse below. 
What is the time of flight of the bandages as observed by the nurse on the ground? 
[5.35 sec]  

18. A med-tech student drops a stone from a bridge 19.6 meters above a river. A premed 
friend throws a stone 0.500 sec later vertically downward so that both stones strike 
the river at the same time. With what velocity did the premed throw the stone? [5.73 
m/sec]  

19. Superphysicist (SP) dives out of a window h 
meters above the ground to save a freely 
falling sky diver whose chute failed to open. 
He leaves the window horizontally when his 
laser eyes see the diver at the same level as the 
window at distance of D meters away. If the 
diver fell from a plane at an altitude of H  with 
a velocity v (m/sec) directed horizontally 
away from SP's building, find the average 
horizontal velocity SP must have to catch the 
diver at ground level(see Figure 3.15). [vave = v 
+ Dg/[√(2gH) - √(2g(H - h))] (What is the 
physical meaning of √(2gH) and √(2g(H-h))?  

 

 

20. A well-conditioned astronaut can jump 1.5 m on earth. The gravitational 
acceleration on the moon is one-sixth that of the earth. Find:  
a. his initial vertical velocity when jumping on the earth  
b. his initial vertical velocity when jumping on the moon  
c. how high he jumped on the moon [v = 5.4 m/sec, v = 5.4 m/sec, 9.0 m]  

21. A slingshot launches a projectile with speed v at an angle Θ with respect to the 
ground. Find the velocity of the projectile at the top of its path. Find the acceleration 
at the top of its path. Since acceleration is perpendicular to velocity at the top, the 
motion is "instantaneously circular." Find the radius of this circular arc. [v cosΘ, g 
down, v2 cos2Θ /g]  

22. A river is flowing south 3.0 km/hour. A canoer can paddle 4.0 km/hr relative to 
water. a. Where must he head his canoe if he wants to go across the river in a 
direction perpendicular to the bank? b. How long will it take him to cross the river if 
it is one-half kilometer wide? c. If he wishes to cross the river in minimum time, 
where should he head the canoe? d. How long will it take him to cross the river, and 
where would he land? [a. 41o with bank upstream; b. 0.19 hr; c. perpendicular to 
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bank; d. 1/8 hr, 3/8 km downstream]  
23. Suppose a ferris wheel with a radius of 9.6 m and a constant tangential speed of 10 

m/sec loses a chair at the top of its path. Find the horizontal distance the chair will 
travel before hitting the ground. Assume center of ferris wheel is 10 m from the 
ground. [20 m]  

24. Given the velocity-time graph in Figure 
3.16  for the 400-m run,  

 a. find the maximum acceleration for 
this run.  

 b. find the distance traveled during the 
positive and negative acceleration 
periods.  

 
 [a. 5.00 m/sec2;  
 b. 10.0 m during positive acceleration;  
 18.0 m during negative acceleration]  
 

 
25. What is the component of the gravitational acceleration parallel to an inclined plane 

13 m long that is elevated 5.0 m at one end. Neglecting friction, how long would it 
take a body starting from rest to slide 9.8 m down the incline? [3.8 m/2, 2.3 sec] 

†26. For a particle whose position is given by x = 2.00 t 2 – (25.0/300 )t 3as a function of 
time, t, a. Find the velocity and acceleration as a function of time. b. Find the 
maximum value of x. [v = 4.00 t- 0.250 t2, a = 4.00-0.500 t; xmax = 171] 

 †27. x = 10 + 20 t 2 - 30 t 4 is the position of a particle as a function of time, where x is in 
meters and t is in seconds.  
a. Find the velocity and acceleration as a function of time.  
b. Find the time when acceleration is zero.  
c. Find the maximum value of x.  
[v = 40t - 120 t3, a = 40 - 360 t2, a = 0 at t = 1/3 sec, smax = 13 1/3 m] 

†28. A body moves along the x-axis according to the relationship s = 4 – 6 t + 3 t2 cm 
where t is the time in seconds. 
a. Where is the body at t = 0?  
b. Where is the body at t = 2?  
c. What is the original velocity?  
d. What is the velocity at time t = 3?  
e. When is the body at rest?  
f. Where is the body when it is at rest?  
g. What is the acceleration of the body?  
h. Through what distance did the body travel between t = 0.5 sec and t = 2 sec?  
[a. 4 cm; b. 4 cm; c. -6 cm/sec; d. 12 cm/sec; e. 1 sec; f. 1 cm; g. 6 cm/sec2; h. 3.75 cm] 


