Arxiu de la categoria: MECÀNICA CLÀSICA

Einstein derrota a Newton en el forat negre del centre de la Via Làctia

La llum d’una estrella que ha passat al costat del gran forat negre del centre de la nostra galàxia, la Via Làctia, s’ha distorsionat tal com prediu la teoria de la Relativitat d’Einstein i de manera diferent a com predeia la teoria gravitatòria de Newton. En tractar-se d’una òrbita el·líptica allargada, l’estrella s’accelera quan s’acosta al forat negre i es desaccelera quan s’allunya, de manera similar a com fan els cometes en el sistema solar quan s’acosten i s’allunyen del sol.

https://www.lavanguardia.com/ciencia/20180726/451113387136/relatividad-einstein-agujero-negro-via-lactea.html

La luz de una estrella que ha pasado junto al gran agujero negro del centro de nuestra galaxia, la Vía Láctea, se ha distorsionado tal como predice la teoría de la Relatividad de Einstein y de manera diferente a como predecía la teoría gravitatoria de Newton. Con este descubrimiento, anunciada hoy por el Observatorio Austral Europeo (ESO), la teoría de la relatividad ha demostrado por primera vez su validez en las condiciones de gravedad extrema de un agujero negro supermasivo.

Las observaciones se han realizado con el telescopio VLT –iniciales en inglés de Telescopio Muy Grande- que el ESO tiene en Cerro Paranal, a 2.635 metros de altitud en el norte de Chile. Los astrofísicos han seguido el movimiento de la estrella S2 en el momento de máxima aproximación al agujero negro, que ha tenido lugar en mayo de 2018.

La estrella se ha acelerado a una velocidad de 25 millones de kilómetros por hora –o casi un 3% de la velocidad de la luz- al acercarse a 20.000 millones de kilómetros del agujero negro. Con una masa de cuatro millones de soles, el agujero negro crea a su alrededor el campo gravitatorio más intenso de la galaxia. Continua la lectura de Einstein derrota a Newton en el forat negre del centre de la Via Làctia

Einstein tenia raó: tot cau a la mateixa velocitat sigui quin sigui el seu pes

Confirmat el principi que tots els cossos que es trobin en un mateix camp gravitatori tenen la mateixa acceleració.  Einstein tenia raó: tot cau a la mateixa velocitat sigui quin sigui el seu pes. És un principi fonamental de la teoria de la relativitat general d’Einstein.

Què cau més de pressa: un martell o una ploma? La inèrcia de les nostres percepcions fa pensar que el primer. Però en realitat, tots els cossos, per molt diferents que siguin les seves masses, cauen amb la mateixa velocitat.

És el que s’anomena principi d’equivalència i està en els fonaments de la teoria general de la relativitat d’Albert Einstein. S’ha confirmat diverses vegades, però ara s’ha fet utilitzant objectes molt llunyans i complexos: un estel de neutrons i un estel nan blanc.

Aristòtil sostenia que els objectes més pesants cauen a més velocitat. Galileu el va contradir i va llençar des de la torre de Pisa dues bales de canó de mides diferents, que van arribar a terra en el mateix moment. Era l’evidència de l’experiment contra el principi d’autoritat.

La demostració va sortir dels límits de la Terra el 1971, quan l’astronauta David Scott va deixar caure un martell i una ploma a la superfície de la Lluna. L’absència d’atmosfera eliminava el fregament i feia que tots dos caiguessin exactament a la mateixa velocitat. A més, la menor gravetat en el nostre satèl·lit ho feia més visible perquè l’acceleració de la caiguda era menor.

Vídeo de Bruno van Wayenburg.

Experiment rere experiment, el principi d’equivalència s’ha anat confirmant. Però l’última ha estat la més espectacular: un equip amb investigadors d’Austràlia, Canadà, Estats Units i Holanda, encapçalat per Anne Archibald, de la Universitat d’Amsterdam, han utilitzat uns objectes que es troben a més de quatre mil anys llum de la Terra. Descriuen el seu mètode a la revista “Nature”.

La clau és un sistema de tres estels: un estel de neutrons i un estel nan blanc, que orbiten junts al voltant d’un altre estel nan blanc. Dit d’una altra manera, els dos primers es troben sota l’atracció gravitatòria del tercer. Els astrofísics van plantejar que si tots dos no queien cap a l’estel central a la mateixa velocitat, s’observarien petites deformacions en les òrbites.

http://www.lavanguardia.com/ciencia/fisica-espacio/20180704/45651742056/test-teoria-relatividad-einstein-gravedad-principio-equivalencia.html

La teoría de la relatividad general de Albert Einstein se ha sometido a la prueba más rigurosa hasta la fecha y la ha aprobado holgadamente. Una investigación internacional liderada por el Instituto de Astronomía Anton Pannekoek de la Universidad de Amsterdam (Holanda) ha demostrado que el principio de equivalencia, que sostiene que todos los cuerpos en un mismo campo gravitatorio caen con la misma aceleración, se cumple también en las condiciones de fuerte gravedad de un sistema formado por tres cadáveres de estrellas: un púlsar y dos enanas blancas. Los resultados se publican hoy en la revista Nature .

El principio de equivalencia es la base de la teoría de la relatividad general de Einstein, que propone que la gravedad no es una fuerza que actúa sobre cada objeto de forma independiente, sino una deformación del propio tejido del espacio-tiempo.

El test ha utilizado un exótico sistema estelar triple, formado por un púlsar y dos enanas blancas, que son el resultado de la muerte de estrellas

En realidad, el principio de equivalencia se conoce desde hace siglos. Galileo Galilei ya lo puso a prueba tirando esferas de distintas masas desde lo alto de la torre de Pisa, en Italia, según algunas versiones de la historia. Y, ya que todas las esferas se hallaban bajo la influencia del mismo campo gravitatorio, el de la Tierra, todas tardaron el mismo tiempo en llegar al suelo.

En 1971, el principio superó otro test en la Luna, cuando el astronauta David Scott, de la misión Apolo 15, dejó caer a la vez y desde la misma altura un martillo y una pluma de halcón sobre la superficie del satélite. En ausencia de aire, y por lo tanto de fricción, la aceleración de ambos cuerpos dependía exclusivamente de la gravedad lunar. Y, como se esperaba, la pluma y el martillo tocaron a la vez el suelo de la Luna.

El nuevo test del principio de equivalencia ha utilizado el exótico sistema triple ASR J0337+1715, a 4.200 años luz de la Tierra. En su centro habita un púlsar: un tipo de estrella de neutrones –los objetos más densos del Universo– que emite un rayo de ondas de radio mientras rota. El resultado es una especie de faro estelar que ilumina la Tierra periódicamente, con una regularidad matemática. Pero si el púlsar se mueve, por culpa de la influencia gravitatoria de otros astros, la regularidad se altera. Los astrónomos son capaces de medir el movimiento del púlsar y de los cuerpos que rotan con él a través de estas irregularidades.

En torno a este púlsar gira una enana blanca, que es el núcleo que queda tras la muerte de estrellas como el sol. Es ocho veces menos masiva y completa una órbita alrededor del púlsar cada día y medio. El tercer componente del sistema triple es otra enana blanca, con el doble de masa, que gira alrededor del sistema interior en una órbita mucho más amplia, de 327 días.

No conocemos ningún otro como este. Eso lo hace un laboratorio único para poner a prueba las teorías de Einstein”

RYAN LYNCH

Coautor de la investigación

“Es un sistema estelar singular”, declara Ryan Lynch, coautor del estudio e investigador del Observatorio de Green Bank (Estados Unidos), en un comunicado difundido por esta institución. “No conocemos ningún otro como este. Eso lo hace un laboratorio único para poner a prueba las teorías de Einstein”, remarca.

Lo que hace a este sistema idóneo para el test es que el púlsar es tan denso que ejerce una influencia gravitatoria incluso sobre sí mismo. Según teorías alternativas sobre la gravedad, esta clase de objetos no cumplen el principio de equivalencia. En cambio, según la teoría de la relatividad general de Einstein, su comportamiento bajo un campo gravitatorio externo no debe ser distinto que el de cualquier otro cuerpo, desde una pluma a una estrella.

Los astrónomos liderados desde el Instituto de Astronomía Anton Pannekoek han observado el púlsar durante seis años. Así han podido determinar su aceleración y la de su compañera enana blanca, la más interna, respecto a la enana blanca externa. Según la teoría de la relatividad general, ambas aceleraciones debían ser iguales, ya que se encuentran en el mismo campo gravitatorio, el de la enana blanca externa. Otras teorías, por el contrario, predecían que serían diferentes.

En línea con la predicción de la teoría general de la relatividad con el principio de equivalencia, el análisis no ha detectado diferencias en las aceleraciones de ambos cuerpos. “Y si ha una diferencia, es menor de tres partes entre un millón”, afirma Nina Gusinskaia, investigadora de la Universidad de Amsterdam y coautora del artículo, en el comunicado del Observatorio de Green Bank.

Así pues, la relatividad general ha pasado el test más riguroso –diez veces más que el anterior– hasta la fecha, mientras otras teorías alternativas, como algunas versiones de la teoría de cuerdas, han quedado prácticamente descartadas. Einstein, una vez más, tenía razón.

http://www.ccma.cat/324/einstein-novament-confirmat-tot-cau-a-la-mateixa-velocitat-sigui-quin-sigui-el-seu-pes/noticia/2864884/

L’aire pesa

Vivim a la Terra dins la seva atmosfera formada, a la nostra alçada, bàsicament per nitrogen (80%) i oxigen (20%). L’aire és una barreja de gasos molt lleugera i per tant ens dona la sensació que no pesa… malgrat que la pressió atmosfèrica (aquesta si que la notem malgrat estar-hi acostumats) és deguda al pes d’uns 300 km d’aire que tenim per damunt nostre.

L’aire pesa

Amb aquesta experiència podem comprovar no solament que l’aire pesa sinó que en podem mesurar (aproximadament) la seva densitat que sabem, sobretot pels llibres i webs, que és d’1,3 kg/m3.

Per fer-ho només hem de pesar primer una ampolla d’un litre (en el nostre cas 1,5 L) plena d’aire (aixo no costa gaire) i després posar-hi a dins un altre litre d’aire i això ho fem amb una manxa fins arribar a una pressió de dues atmosferes. Per conèixer la pressió dins l’ampolla ho podem fer amb el manòmetre de la manxa (molt imprecís) o posant dins l’ampolla una xeringa de 2 mL tancada hermèticament per la punta, quan el seu volum s’hagi reduït a 1 mL aleshores la pressió serà el doble (2 atm) tenint en compte la llei dels gasos P·V = P’·V’.

En el nostre cas el conjunt ampolla, tap, xeringa i 1,5 L d’aire pesa 63,63 grams i posteriorment el conjunt ampolla, tap, xeringa i 3 L d’aire pesa 66,68 grams. així doncs comprovem que 1,5 L d’aire pesa 3,05 grams i per tant la densitat de l’aire és 2,03 g/L = 2,03 kg/m3 (valor esperat: 1,3 kg/m3).

És important que el volum del recipient que utilitzem no varii per tal que la força ascensional degut al principi d’Arquímedes no afecti al resultat de l’experiment així doncs fer aquesta experiència amb un globus produiria un error considerable.

L’error en el resultat és considerable i això pot ser degut a la poca precisió del manòmetre / xeringa en la mesura de les 2 atmosferes.

Nota: Aquest proposta la va presentar l’Anicet Cosialls (amb el seu savoir fairecaracterístic) al Seminari Permanent de Física i Química, em va agradar per la seva simplicitat i claredat. Moltes gràcies Anicet!

El canvi climàtic anuncia temps turbulents per als viatges aeris

Des de l’augment de les temperatures que eviten l’enlairament fins a les pistes d’inundació dels mars en augment, l’aviació ha d’adaptar-se als canvis que ja tenen vols a terra arreu del món.

Gràcies al canvi climàtic, ben aviat, 48 ºC pot semblar poc habitual. A mesura que el món s’escalfa i el clima es fa més extrem , els dissenyadors d’aeronaus, els planificadors d’aeroports i els pilots han de respondre tant a l’aire com a terra. Amb uns 100.000 vols a tot el món amb vuit milions de passatgers cada dia, això és un gran problema.

Per què és un problema de calor per als avions? En una paraula: aixecar. L’elevació és la força ascendent creada per desviar l’aire al voltant de les ales quan un avió es mou per la pista d’aterratge. És més difícil d’aconseguir quan l’aire s’escalfa, ja que l’aire calent és més fi que l’aire fred (hi ha menys molècules ).En condicions normals l’aire és dens i les seves molècules estan juntes. Durant l’enlairament, la velocitat de l’avió provoca una empenta de l’aire contra les ales i es produeix una força de sustentació vertical. En condicions de calor, les molècules se separen i disminueix la fricció i per tant la força de sustentació.

L’Organització de l’Aviació Civil Internacional (OACI) va advertir el 2016 que, com a resultat, les temperatures més altes “podrien tenir conseqüències greus per al rendiment de l’enlairament de l’avió”.

Les aeronaus necessitaran expulsar passatgers, càrregues o combustible per obtenir el mateix ascensor en un dia calorós, augmentant els costos i que requereixen més vols.

Veure també: https://www.univision.com/noticias/clima/descubre-por-que-los-aviones-no-pueden-volar-cuando-hace-demasiado-calor

https://www.theguardian.com/environment/2018/feb/19/climate-change-spells-turbulent-times-ahead-for-air-travel Continua la lectura de El canvi climàtic anuncia temps turbulents per als viatges aeris

Creen per primera vegada matèria amb massa negativa

La Segona Llei de Newton estableix el següent: L’acceleració d’un objecte és directament proporcional a la força neta que actua sobre ell i inversament proporcional a la seva massa.

Això és cert en mecànica clàssica però ara s’ha demostrat que seguint els principis de la mecànica quàntica passen altres coses…

En física, el condensat de Bose-Einstein és l’estat de la matèria que es dóna en certs materials a temperatures properes al zero absolut

En aquest estat, les partícules es desplacen a una velocitat increïblement lenta i segueixen els principis de la mecànica quàntica, més que de la física clàssica, ja que comencen a comportar-se com ones, en comptes de partícules, i ocupen una posició en l’espai que no pot ser determinada amb precisió.

Físics nord-americans han creat per primera vegada matèria amb massa negativa. Ho han aconseguit refredant àtoms de rubidi a temperatura propera al zero absolut dins d’un recinte de 100 micròmetres de diàmetre. Els àtoms es comporten com si tinguessin massa negativa: avancen en la direcció oposada a l’impuls que reben, com si xoquessin amb un mur invisible.

http://www.tendencias21.net/Crean-por-primera-vez-materia-con-masa-negativa_a43878.html Continua la lectura de Creen per primera vegada matèria amb massa negativa

Nivell 5

Entre les lectures de Setmana Santa, aquest article crida l’atenció. La robòtica va envaint les nostres vides a tots els nivells. Potser d’aquí a uns anys distingim el número de la classe de robot que ens afecta. Aquesta és una proposta per classificar els robots en nivells segons el seu grau de dependència dels humans. L’editor de Science Robotics, Guang-Zhong Yang, i un equip d’enginyers, cirurgians, científics de la computació, gestors tecnològics i experts en ciència ficció han proposat classificar els robots mèdics, presents i futurs, en sis nivells, del zero al cinc .

La robòtica és la branca de l’enginyeria mecatrònica, de l’enginyeria elèctrica, de l’enginyeria electrònica, de l’enginyeria biomèdica i de les ciències de la computació que s’ocupa del disseny, construcció, operació, disposició estructural, manufactura i aplicació dels robots
La robòtica combina diverses disciplines com són: la mecànica, l’electrònica, la informàtica, la intel·ligència artificial, l’enginyeria de control i la física. Altres àrees importants en robòtica són l’àlgebra, els autòmats programables, l’animació electrònica i les màquines d’estats .

http://elpais.com/elpais/2017/04/12/opinion/1492009945_127668.html Continua la lectura de Nivell 5

Has sentit parlar de la Teoria de Cordes?

La teoria de cordes és una de les hipòtesis més esmentades, complicades i estudiades de la física. En un capítol de la famosa serie,The Big Bang Theory, Sheldon discuteix amb un nou i jove alumne sobre ella, el que ens ajudarà a analitzar-la a fons i descobrir per què és tan important per a la ciència.

La teoria de cordes és un model físic que tracta d’unificar totes les forces de la natura. “Una teoria per governar-les totes”

Actualment es coneixen quatre tipus de forces que són les que s’estan intentant unificar: la gravetat, l’electromagnetisme i les dues forces dels àtoms les forces nuclears dèbils i les fortes.El problema de la física respecte a aquestes forces es dóna quan es pretén explicar les interaccions entre elles.

De les quatre forces anteriorment citades la més coneguda és sens dubte la de la gravetat que Newton (Mecànica clàssica) ens va donar a conèixer i que Einstein (Mecànica relativista) va revisar dient que l’espai en si està sent retorçat i corbat contínuament per la matèria i l’energia movent-se dins d’ell, i el temps flueix a diferents velocitats per a diferents observadors. Això vol dir que la gravetat és una deformació de la geometria de l’espai temps representada a la imatge anterior com una maia que és deformada per la terra. A més ja que la terra gira, aquesta curvatura es distorsiona fins a un vòrtex poc profund.

Ara, fins i tot la teoria d’Einstein sembla que no ofereix una explicació completa, ja que la mecànica quàntica és incompatible amb la teoria d’Einstein ja que quan aquestes dues teories es fan servir conjuntament, les equacions combinades produeixen solucions sense sentit. Davant està problemàtica sorgeix la teoria de les cordes, com una imaginativa solució que podria funcionar.

Essencialment la teoria de cordes explica que tot l’univers, des de la partícula més ínfima a l’últim confí de l’espai, està conformat per petites brins d’energia que es coneixen com a “cordes”. D’aquesta manera, cada partícula subatòmica neix de les maneres de vibració de la “corda”. I el realment interessant és que aquesta teoria unifica les dues grans teories físiques del segle XX, la teoria de la relativitat d’Einstein i la mecànica quàntica.

No obstant això no tot és perfecte en aquesta teoria. Segons aquesta concepció teòrica vivim en un món de 10 dimensions (nou espacials i una temporal), tot i que no veiem més que quatre. I per altra banda, aquesta teoria produeix una superabundància (milions de milions de milions) d’universos compatibles amb el nostre, el que sembla una cosa completament impossible

http://www.taringa.net/post/ciencia-educacion/10908844/Teoria-de-las-cuerdas-Para-saber-de-que-habla-sheldon.html

http://www.muyinteresante.es/ciencia/video/la-ciencia-en-big-bang-que-es-la-teoria-de-cuerdas

Per què és tan difícil aterrar a Mart?

A 2n ESO estem treballant la unitat : “La matèria la mesura”. El coneixement i la importància de las unitats per mesurar la magnituds fonamentals són claus com a eina per desenvolupar qualsevol matèria  de  ciències.

Una de les activitats ha consistit en la lectura i estudi d’una notícia real sobre una aterratge frustrat a Mart que es va produir als anys 90 per un error en el sistema d’unitats utilitzat. Un cop ja en vol, per ajustar la trajectòria, un contractista va facilitar les dades de navegació en unitats imperials, mentre que la NASA esperava rebre’ls en mètriques. Ningú es va adonar de la discrepància i el Climate Orbiter es va capbussar en l’atmosfera marciana a una altitud tan baixa que es va desintegrar en pocs segons ….

Malauradament l’intent d’aterratge  a Mart del passat dimecres tampoc es va produir.  El mòdul d’aterratge de la missió ExoMars es va estavellar a Mart el dimecres, segons ha confirmat Thierry Blancquaert, responsable d’aquesta nau dins de l’Agència Espacial Europea (ESA), a AFP.

Aquest matí, Jorge Vague, científic del projecte ExoMars, ha reconegut que la nau va fallar i va caure sense paracaigudes i amb els coets apagats des d’una altura d’uns 2.000 metres. Les causes de l’accident encara no estan clares, ha assenyalat.

Des que va començar l’era espacial, s’han fet 45 intents. Els errors han estat molt variats, encara que la major part es van deure a problemes de llançament Continua la lectura de Per què és tan difícil aterrar a Mart?